This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605268

JOURNAL OF KIEX CLASS FILES, VOL.XXX, NO.XXX, XXXX 2024
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Abstract—The vector database stores data as high-dimensional
feature vectors. Some recently proposed attack techniques enable
an adversary to launch feature vector inversion (FVI) attacks
against vector databases. In FVI attacks, an adversary trains
an FVI attack network to reconstruct the original private data
from their feature vectors based on the assumption that an
auxiliary dataset is available to the adversary. However, such a
data-available assumption is too strong, making such FVI attacks
unrealistic in many real-world scenarios. In this paper, we make
the first systematic study on FVI attacks against vector databases
in the data-free setting. To tackle the issue of no training data, we
develop an output-to-input data generation technique that helps
to generate synthetic fake samples for the FVI attack network
training. In addition, to ensure the high quality of generated
fake samples, we develop the accelerable complete bipartite
graph (CBG) search strategy and the downstream-classifier-
aided generator training strategy. Furthermore, we empirically
identify multiple factors that influence the attack performance.
Intriguingly, as the key insight of this work, we find that the
proposed FVI attack technique in the data-free setting can be
directly employed to boost the attack performance of FVI attacks
in the auxiliary-dataset-available setting. Finally, we propose and
study defenses against the proposed attacks.

Index Terms—Vector database, feature vector inversion attack,
data-free.

I. INTRODUCTION

HE amount of unstructured data (e.g., images and graphs)

is increasing rapidly nowadays. To manage unstructured
data, a common practice is to use machine learning (ML)
techniques to extract a feature vector (i.e., a list of real-valued
numbers) from an unstructured data. Then, the unstructured
data object can be represented by its feature vector that is
mathematically and computationally convenient to be used
for various downstream ML tasks. Feature vectors can also
be called embeddings in natural language processing (NLP)
ML tasks or templates in biometrics ML tasks. In recent
years, deep learning (DL)-based algorithms have shown their
exceptional ability in feature extraction since the extracted
feature vectors usually achieve state-of-the-art performance
when used in downstream ML tasks. To facilitate feature
extraction, many deep neural network (DNN)-based feature
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(or embedding) extractors have been developed, pre-trained,
and published online. For example, the pre-trained ResNet-50
[20] and MobileNet [24]] are published to extract image feature
vectors for different ML tasks. After being extracted by DNN-
based feature extractors, feature vectors can be stored in many
different forms of containers such as a database-like file (e.g.,
Microsoft Excel), a relational database, or a dedicated vector
database (e.g., Pinecone [4], Milvus [2], Weaviate [5]]). To
avoid confusion, this paper uses the term “vector database” to
specially refer to any databases (including database-like files,
relational databases, and dedicated vector databases) that store
feature vectors.

In vector databases, the original data (before feature ex-

traction) is usually highly privacy-sensitive. For instance, the
original data could be personal biometric data, personal health
data, commercial valuable data, financial data, etc. If such data
is leaked, it can be abused by an adversary. For example, if
personal biometric data like face images are compromised,
an adversary could use the victim’s face image to bypass
online authentication systems. Additionally, if personal health
data is exposed, it could reveal sensitive information about
an individual’s health status, leading to a breach of personal
privacy. Moreover, the original data could be the intellectual
property (IP) of the data owner, and its leakage could result
in IP infringements. Hence, it is crucial to ensure the confi-
dentiality of the original data from potential adversaries when
using vector databases. However, in this paper, we show that
it is possible for an adversary to reconstruct the original data
from their feature vectors. Studying such FVI attacks (i.e., data
reconstruction attacks) and possible defenses are the central
themes of this work.
Limitations of Prior FVI Attacks. The attack techniques
developed in prior studies (e.g., [[16]], [34], [41]) can be used
to launch FVI attacks against vector databases. The major
limitation of prior FVI attacks in our attack scenario is that
their attack success depends on a strong assumption: the
adversary can access an auxiliary dataset that is a subset of
the original data or a dataset with a similar distribution (i.e.,
assuming a data-available threat model). The auxiliary dataset
enables the adversary to create massive (data, vector) pairs,
which can be used to train an FVI attack network to launch
the attack. Nevertheless, in practice, an adversary might not
always be able to acquire a high-quality auxiliary dataset,
especially when the original dataset is highly confidential and
kept secret from the public.

To eliminate the strong data-available assumption, this paper
aims to study the data-free FVI attack. Compared with the
data-available threat model, a successful FVI attack in the
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Fig. 1: Comparision between prior attacks and our studied
attack.

data-free threat model would pose more severe threats to
vector databases because fewer resources are needed by the
adversary. Figure [I| compares prior data-available FVI attacks
and our data-free FVI attack. In prior FVI attacks, feature
vectors are never used for FVI attack network training, so
they are ignored. In contrast, our FVI attack leverages feature
vectors (that the adversary aims to inverse) to train the FVI
attack network, making the data-free FVI attack possible.
More specifically, our research is driven by answering the
following four research questions (RQ).
« RQI: Is it feasible for an adversary to launch a successful
feature vector inversion attack when the auxiliary dataset is
absent? If yes, how to design the attack?

e RQ2: What factors influence the designed feature vector
inversion attack performance?

o« RQ3: What are the further security implications of the
proposed attack technique?

o RQ4: How to design solutions to mitigate the attacks?
Technical Challenges and Proposed Solutions. To answer
RQ1, we aim to design a successful data-free FVI attack. There
are mainly three technical challenges to be addressed.

First, it is challenging to train the FVI attack network if
the dataset used for training is no longer available. To handle
this challenge, we develop an output-to-input data genera-
tion technique. In such a technique, a generative adversarial
network variant (GANYV) is trained so that its generator can
produce synthetic fake training samples. Specifically, the fake
sample generator in GANYV is trained to generate fake samples
such that their extracted feature vectors’ distribution is hard
to be distinguished from that of adversary-accessible feature
vectors. Since the usage of the feature extractor’s outputs
(i.e., feature vectors) enables the generation of the feature
extractor’s inputs (i.e., fake samples) in a backward manner,
we call the above technique “output-to-input data generation
technique”.

Second, it is challenging to develop a high-performance
size inference algorithm to infer the ground-truth size of the
synthetic fake images. In the strict data-free threat model, the
original image size information is agnostic to the adversary.
It is infeasible to train a high-quality fake sample generator if
the synthetic image’s size information is unknown. To tackle
this challenge, we propose the accelerable complete bipar-
tite graph (CBG) search strategy. In the accelerable CBG
search strategy, the adversary first trains many different-sized
(generator, discriminator) pairs. Then, all generators and all

discriminators are mutually connected to form a CBG. The key
idea in the accelerable CBG research strategy is: fake samples
generated by the generator initialized with the size (that is
closest to the ground truth) cheat most of the discriminators
in the CBG. Therefore, the adversary can measure the cheating
success rate to infer the ground-truth size gradually via a large-
step-to-small-step search. In addition, we develop a search
space pruning strategy to accelerate the ground-truth size
search process. The pruning strategy is developed based on
the following critical observation: for some feature extractor
types, the input size scope can be deduced based on the output
size and network architecture in a backward manner.

Third, in case the label information of feature vectors is
available to the adversary, how to leverage the label infor-
mation to design stronger FVI attacks poses a non-trivial
technical challenge. To handle this challenge, we develop the
downstream-classifier-aided generator training strategy.
In this strategy, we first train a downstream classifer using
the feature vectors and their labels. Then, we employ two
additional losses (i.e., one-hot loss and information entropy
loss) defined with the help of the downstream classifier to
guide the fake sample generator training. As such, the hard
label information conveyed in the downstream classifier can
be properly leveraged. It is demonstrated by our experimental
results that the downstream-classifier-aided generator training
strategy indeed helps to improve FVI attack performance under
most circumstances.

Attack Performance Factors. To answer RQ2, we conduct
intensive experiments and precisely identify the factors that
influence the attack performance. It generally holds that the
more background knowledge and capabilities the attacker
owns, the higher the attack performance. More experiential
details can be found in Section [V-Cl

Broader Impact. To answer RQ3, we discover that the
proposed output-to-input data generation technique not only
leads to FVI attacks in the data-free setting but also impacts
prior data-available FVI attacks. Specifically, it can be used
to augment the dataset used for training the attack network
in the prior dataset-available FVI attacks, thereby improving
their attack performance. Therefore, the developed FVI attack
technique in the data-free setting helps FVI attacks in the data-
available setting.

Defenses. To defend against the proposed FVI attacks, we pro-
pose and investigate three types of feature vector perturbation-
based defenses including vector rounding, vector thresholding,
and vector noising. It should be noted that there is always a
tradeoff between security and utility. Through intensive ex-
periments, the effective defenses (that strike the best tradeoffs
between data security and data utility) under different settings
are accurately recognized.

Contributions. The main contributions of this work are sum-

marized below.

o As far as we know, this paper is the first systematic study
of FVI attacks against vector databases in the data-free
setting. By characterizing the background knowledge of the
adversary across 3 dimensions, we systematically study 8
types of data-free FVI attacks.
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o We develop multiple techniques/strategies (including output-
to-input data generation technique, accelerable CBG search
strategy, and downstream-classifier-aided generator training
strategy) to realize the data-free FVI with high attack
performance.

o Through intensive experiments of 8 attacks on 4 benchmark
datasets, we empirically identify multiple factors that influ-
ence the attack performance, thereby deepening our holistic
understanding of the vulnerabilities of vector databases
against such FVI attacks.

« We are the first to reveal that the proposed output-to-input
data generation technique can be directly employed to boost
the attack performance of FVI attacks in the traditional data-
available setting.

o We uncover that the proposed feature vector perturbation
defenses (with proper parameter choices) can mitigate the
proposed FVI attacks and the three impacted ML attacks.
Our study sheds light on how to design better defenses.

II. PROBLEM STATEMENT

A. Problem Settings

In this paper, we focus on the vector database which
stores feature vectors extracted from image data. The used
feature extractor is the pre-trained DNN-based. The considered
downstream ML task is the most frequently used image
classification task.

B. Threat Model

Following the same threat model as prior auxiliary-dataset-
available FVI attacks [16], [34], [41], the adversary’s goal
is to train an FVI attack network to launch the FVI attack
from each adversary-accessible feature vector stored in the
vector database. It is desirable that the reconstructed data
should be close to its original data as much as possible. To
have a systematic study of the attack, we characterize the
background knowledge of the adversary across the following
three dimensions.

1) Knowledge About the Feature Extractor. Our study
aims to cover two commonly studied settings in the prior
studies: the white-box and the black-box setting. In the white-
box setting, the adversary knows the target feature extractor’s
model details. In the black-box setting, the adversary does
not know the target feature extractor’s model details, but the
adversary can query the feature extractor on inputs and receive
the extracted feature vectors as outputs.

Real-World Examples. For the white-box setting, some online
platforms (e.g., GitHub) publicly share the pre-trained feature
extractor. Consequently, the adversary can obtain the white-
box feature extractor through online downloading. For the
black-box setting, Encoder-as-a-Service (Eaas) [1]l, [3]] pro-
vides the public with a cloud API to convert data into feature
vectors. Therefore, the adversary can obtain the feature vector
of the input data through invoking the cloud API.

2) Knowledge About the Size Information of Original
Images. When an auxiliary dataset is available, the adversary

typically views the image size of the auxiliary data as the
target image size. In data-free settings, our study intends to
address both cases: the adversary knows or does not know the
size information of the original images.

Real-World Examples. The adversary may learn the size
information of the original images from some side-channel
information (e.g., from the size of the accepted images when
using the Eaas cloud API; from the image data owner who
uses the vector database). In a more strict situation, the size
information of the original images is agnostic to the adversary.
3) Knowledge About the Hard Label Information of
Feature Vectors in the Database. The hard label is an integer
that represents the class of each feature vector. Our study will
take two cases into consideration: the adversary can or cannot
access the hard label information of the feature vectors.
Real-World Examples. If the feature extractor is pre-trained
by supervised learning, the label information may be stored
along with the extracted feature vectors. In addition, if the
extracted feature vectors are used for training downstream
classifiers, the label information should be provided along with
the feature vectors. In the above two cases, the adversary can
access the label information stored along with feature vectors.
In another scenario, if the feature extractor is pre-trained by
unsupervised learning, the hard label may be absent.

TABLE I: Attack taxonomy. v' (x) means the adversary has
(does not have) the knowledge.

Name | MA SIZE LABEL || Name | MA SIZE LABEL
Attack-1 w v X Attack-5 B v X
Attack-2 w v v Attack-6 B v v
Attack-3 w X X Attack-7 B X X
Attack-4 w X v Attack-8 B X v

Mathematically, we denote the knowledge about the feature
extractor’s model access as MA. We have MA = {W, B},
where W represents white-box access and B represents black-
box access. The knowledge about the size information of
original images is denoted as SZZE& and knowledge about
the hard label information is denoted as LABEL. Therefore,
we formulate the adversary’s background knowledge K as the
following triplet

K=(WMASIZE, LABEL).
According to different background knowledge settings of the
adversary, the data-free FVI attacks can be categorized into 8
types, as shown in Table [l In the table, attacks are slightly

re-ordered to facilitate our attack methodology description in
Section [T

III. ATTACK METHODOLOGIES

This section describes attack methodologies for 8 types of
attacks, as shown in Table [l

A. Attack-1

In Attack-1, K = (W, V, x). Figure 2| shows the FVI
pipeline which consists of three stages: fake sample generator
training stage, FVI-Net training stage, and FVI-Net attack
stage. Each stage is elaborated as follows.
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Fig. 2: The FVI attack pipeline (which consists of three stages) for Attack-1. At the first stage, a fake sample generator is
trained in a data-free manner. At the second stage, the fake samples output by the well-trained generator are used for FVI-Net
training. At the third stage, an adversary-accessible feature vector is fed into FVI-Net to output its reconstructed images. Note
that the remaining attacks (i.e., Attack-2 to Attack-8) follow the above three attack stages. In the remaining attacks, different
strategies are developed to accommodate different background knowledge owned by the adversary.

1) Fake Sample Generator Training Stage. At this stage, we
develop an output-to-input data generation technique. In such
a technique, a generative adversarial network variant (GANV)
is trained so that its generator can produce synthetic fake
training samples used for the FVI attack network (named FVI-
Net) training. FVI-Net is used to generate the reconstructed
image given its feature vector. With the help of the fake sample
generator in GANV, FVI-Net can be trained without reliance
on an auxiliary database.

Mathematically, we denote the feature extractor and the
vector database as F' and D,, where D, is extracted by F'
from an unknown original dataset D. Given a random noise
vector z as input, the generator G' outputs a fake sample X.
Then, the fake sample is forwarded into F' that outputs fake
feature vector v, where v = F(x). The fake feature vectors
and the adversary-accessible real feature vectors in D,, can be
used to train the discriminator D. Following [19], we express
the training objective of GANV as

m()in max Leanv(G, D) =Evnpy (o, [logD(v)]

+Ezno,1)[log(1 = [Do Fo G](Z))](:l)
where [Do F'oG|(z) denotes D(F(G(z))). Through adversar-
ial co-training between G and D, G can be trained to generate
high-quality fake samples while D can be trained to evaluate
whether a given sample is real or fake. In GANV co-training,
the feature extractor F' allows the gradients to pass through
it, but its weights are fixed and never updated. For a well-
trained GANYV, feeding a sample to D o F, a probability can
be calculated by D. If the output probability is greater than
0.5, then the input sample is evaluated to be real; otherwise,
it is evaluated to be fake.

The GANV developed in Attack-1 is different from the
classical GAN in two-fold. First, in GANYV, a fixed neural
network (i.e., feature extractor) is inserted between the gen-
erator and the discriminator. Second, in the classical GAN,
the discriminator is used to distinguish between two images.
In contrast, in GANYV, the discriminator is used to distinguish
between two feature vectors. Note that the usage of the feature
extractor’s outputs (i.e., feature vectors) enables the generation
of the feature extractor’s inputs (i.e., fake samples) in a
backward manner, so we call the above technique “output-

to-input data generation technique” in this paper.
2) FVI-Net Training Stage. The goal of this stage is to train
FVI-Net (denoted as R) that can generate the reconstructed
image given its feature vector. To achieve the goal, we train
FVI-Net using a cycle-consistence loss. Mathematically, given
a fake sample X generated from the well-trained generator G,
the cycle-consistency loss is defined as

Leye = d([R o F|(X), %), 2)
where d(-, -) denotes the conventional ¢; norm. By minimizing
Ly in training, the well-trained FVI-Net can map a feature
vector to its reconstructed image.

3) Attack Stage. At the attack stage, the well-trained FVI-Net
(denoted as R*) is used to reconstruct the original data from
the corresponding feature vector stored in the vector database.
Formally, for each v € D,, the reconstructed image x’ can be
obtained by x' = R*(v).

B. Attack-2

In Attack-2, X = (W, v/, v'). Compared with Attack-1, the
adversary has extra knowledge of each feature vector’s hard
label. As Attack-1, Attack-2 also consists of three stages as
shown in Figure [2]

1) Fake Sample Generator Training Stage. We aim to
use the hard label information to train a better fake sample
generator that improves the FVI attack performance. However,
it is hard to directly make use of the hard label information
to train a better fake sample generator. To address this issue,
we develop the downstream-classifier-aided generator training
strategy. In this strategy, the adversary uses the feature vectors
and their hard labels to train a downstream classifier. With the
help of the well-trained classifier, two extra loss functions are
employed to guide the training of the fake sample generator.
As a result, our strategy allows the adversary to leverage the
hard label information to train a better fake sample generator.

To be specific, the adversary can use (vector, label)
pairs to train a classifier C' via standard supervised learn-
ing. After training, feeding a set of fake feature vectors
{V1,V2,...,V,} into the well-trained classifier C*, the output
logits {t1,t2,...,t,} can be obtained by t; = C*(v;).
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The predicted labels {l1,ls,...,l,} are then calculated by
l; = argmax; (ti)j. Inspired by [11], we introduce the one-
hot loss and information entropy loss as follows.

e One-Hot Loss. An effective generator is expected to produce
images that the classifier can assign to a specific category with
a higher probability. Formally, the one-hot loss L, is given
by

1 n
['oh = E ;‘cce(tiyli)a (3)

where L. is the classical cross-entropy loss.

e Information Entropy Loss. A good generator is supposed
to generate a balanced set, which contains a roughly equal
number of synthetic images for each class. To achieve the goal,
we introduce information entropy loss as follows. Specifically,
given a probability vector p = {p1, p2, ..., Pk }, the information
entropy of p is calculated as Hipf0(P) = —1 >, pi log(p:).
Given a set of output logits {t1,ts,...,t,}, the information
entropy loss L;. of fake samples is given by

1 n
Lie = ~Hingo(Norm(— > t.)), )
=1

where Norm(-) represents the softmax normalization.
To sum up, the final objective function is defined as

Etotal = EGANV(Ga D) + 6£oh + 7£i87 (5)
where Lganv (G, D), Lon, and L;. can be found in Eq. ,
Eq. (3), and Eq. (d), respectively. The hyperparameters /3 and
~ are adopted to balance different terms. The well-trained
generator G can be obtained by solving the final objective
function. Given random noises as input, G aims to output
images that share a similar distribution of the original dataset.
2) FVI-Net Training Stage and Attack Stage. The two stages
are consistent with Attack-1, so their descriptions are skipped.

:GSiZeg
[t A S H
Fig. 3: A simplified example to illustrate our accelerable CBG
search strategy. G**¢ and D; are adversarially co-trained.

C. Attack-3

In Attack-3, K = (W, x, x). Compared with Attack-1,
the size information of the original image is not available
to the adversary. Therefore, in Attack-3, we design a size
inference algorithm to infer the size of the original image data.
In the size inference algorithm, we propose the accelerable
complete bipartite graph (CBG) search strategy, which is
briefly introduced below.

First, we train multiple (generator, discriminator) pairs with
different sizes. After training, all generators and all discrimi-
nators are mutually connected to form a CBG. The key idea in
the accelerable CBG search strategy is based on the following
observation: fake images generated by the generator initialized
with the size (that is closest to the ground truth) cheat most
of the discriminators in the CBG. Therefore, the adversary

can measure the cheating success rate to infer the ground-
truth size gradually via a large-step-to-small-step search. For
brevity, the developed algorithm is called the Large-Step-to-
Small-Step (LS®) search algorithm. Note that in LS?® search
algorithm, we also design a pruning strategy to accelerate the
search (see Section [[II-D).

Figure 3] shows a simplified numerical example to illustrate
our accelerable CBG search strategy. As shown, a sample
generated by G*¥*¢1 can cheat all discriminators, whereas a
sample generated by G**°2 and G***¢3 can only cheat two of
the three discriminators. As a result, sizey is inferred as the
size that is closest to the ground truth. In our algorithm, we
use multiple samples (instead of one) to increase the inference
accuracy.

Specifically, we define the size of an image as a 2-tuple of
pixels consisting of height and width (denoted as h x w). For
a generator initialized with size h x w, we define a metric
called average cheating success rate (ACSR). We denote the
number of test fake samples and the number of discriminators
as N; and Np, respectively. Let N/** be the number of
average successful cheating samples initialized with size h X w
among a set of discriminators. Let G"*™ denote the generator
initialized with size h x w. After training, the average number
of successful cheating samples on a set of discriminators is

denoted as N"*%_ which is given by
Np N

1
N = 30 U(Di0 6P (ay) > 05), (6
i g

where I(-) is the indicator function that equals 1 if the
following inequality holds, and O otherwise. Note that if the
output probability of a discriminator is greater than 0.5, then
the input sample is evaluated to be real; otherwise, it is
evaluated to be fake. Accordingly, the ACSR of G"*™ is
defined as

ACSR"™ v = N> /N, (7)

where ACSR" ™ € [0,1]. After one round of search, a size
close to the ground truth can be found. Then, the estimated
size scope is narrowed down and a smaller step size is set.
Next, the next round of search is performed to obtain a more
accurate size. The above search process repeats until the step
size is 1.

Algorithmdisplays LS? algorithm. Given a feature extrac-
tor F, a vector dataset D,, an estimated scope (Amin, Pmaz) X
(Wmin, Wmaz), and the step size r, this algorithm is ex-
pected to output the most likely ground-truth size. In practice,
(hmins Pmaz) X (Wiin, Wimaz ) 18 set to be (1,2048) x (1, 2048)
since the input size of most image feature extractors is less
than 2048 x 2048. If the ground-truth size is not in the above
pre-set scope, a larger value for h,,q, and w,,, can be set.
Specifically, in one round of search (i.e., from Line 4 to Line
18), the algorithm searches for the best (R™,w™) in a grid
manner, where the grid step size is 7. Then, from Line 19 to
Line 23, the algorithm narrows down the search scope and
reduces the step size. Next, the algorithm goes to the next
round of search. The above procedures repeat until the step
size is 1.
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Algorithm 1: LS? search algorithm

1 A vector dataset D,,, a feature extractor I, an estimated
scope (Bmin, Amaz) X (Wmin, Wmaz), @ step size r. Inferred
height h™, inferred width w™.

2 while » > 1 do

/+ Prepare stage */

3 Initialize listG <« [],listD « [|, max ACSR «+ 0,
h « hmin;

4 while h < h.,pq. do
5 W 4 Wimin;
6 while w < wya. do
7 Initialize G"*% and D"*v;
8 Train G"*™ and D"** by minimizing Eq. ;
9 Add G"*" to listG ;
10 Add D"** to listD ;
11 Update w <~ w +1;
12 | Update h <~ h+1;

/* Inference stage */
13 for : =1 to ListG.length do
14 G"*v = ListGli);
15 Calculate ACSR" ™ using Eq. @)—;
16 if ACSR > maxACSR then
17 Update mazACSR < ACSRM™;
18 Update h™ < h;
19 Update w™ + w;
20 Update himin < B — r;
21 Update Womin +— w™ — 7}
2 Update hmas < h™ +7;
23 Update Wimaz +— w™ + 73
24 Update 7 < |r/2];

With the help of LS? algorithm, the adversary can infer
a size that is highly likely to be the ground truth. Once the
size is accurately inferred, the background knowledge setting
of Attack-3 is identical to Attack-1. Therefore, the detailed
descriptions of the remaining attack pipelines of Attack-3 are
omitted. Remarkably, as shown by our experiments in Section
the inferred size may have a small deviation from the
ground truth. In this case, we have experimentally verified that
the attack performance of Attack-2 is only slightly reduced
(see Figure [7).

D. Attack-4

In Attack-4, K = (W, x, v'). Compared with Attack-3, the
adversary acquires the additional information of hard label.
In Attack-4, the adversary can still invoke Algorithm |1} to
infer the size of the original image. Once the size information
is inferred, Attack-4 reduces to Attack-2. Thus, the detailed
descriptions of the attack pipelines of Attack 4 are skipped.

Both Attack-3 and Attack-4 need to invoke Algorithm [I] to
infer the size of the original images. We note that Algorithm
[[] used CBG search strategy can be accelerated via the search
space pruning strategy described below.

Search Space Pruning Strategy. For some types of feature
extractors, a search space pruning strategy can be developed
by using the information of the feature extractor’s output size
(before flatted into a vector) and its network architecture.
The pruning strategy is developed based on the following

critical observation: for some feature extractor types, the input
size scope can be deduced based on the output size and
network architecture. Hence, the input size search space can

be narrowed down and Algorithm [I] can be accelerated.

We use the most commonly used convolutionary neural
network (CNN)-based feature extractor as an example to
illustrate our idea. Mathematically, we use kj, X k,, to denote
the kernel size, use strd to represent the stride, and use p to
denote the number of rows or columns added to all four sides
of the input. Accordingly, a feature processing layer (FPL)
can be viewed as a function y = FPL(ky,, ky, s, p,x), where
F PL usually performs dimension reduction of x. Let h;,, and
hout represent the height of x and y, respectively. Let w;,
and w,,; represent the width of x and y, respectively. Their
relationships are given by

hous = | strd 1 wous = | strd
Accordingly, we have the following theorem.

+1]. (8)

Theorem 1. Given an input x with size h;, X w;, and its
FPL-output y with size hoyt X Woyt, it holds that
hin € [hout X strd + Cy — strd, hoys X strd + Cy — 1],

Win € [hout X strd + Cy — strd, hoy X strd + Cy — 1],
where Cy = kp, — 2p and Cy = k,, — 2p.

Proof. According to Definition 1 and Eq. (8), we have
Rin — kn +2p

hout = I_ + 1J . (9)
strd
According to Eq. (9), it holds that
hin — k 2
hout S M + 1 < hout + 1 (10)
strd

Eq. (I0) can be re-written as

(hout—1) x strd+kp—2p < hi < hour X strd+k,—2p. (11)
By setting Cp = kj, — 2p in Eq. (TI), we have

hin € [(hout — 1) X strd + Co, howr X strd + Cp).

Because h;, € ZT, Eq. is equivalent to

hin € [(hout — 1) x strd + Cy, hour X strd + Co — 1]. (13)
Similar to the analysis for the height of input, the width of
input follows

Win € [(Wout — 1) X strd 4+ C1, weyt X strd+ Cy — 1], (14)
where C = k,, — 2p. O

12)

According to Theorem [I} given the output size in the
last layer of the CNN-based feature extractor, the adversary
can successively infer the range of the input size for the
previous layer until the first layer. For example, a LeNet-
5-based feature extractor contains 4 feature processing lay-
ers. They can be sketched as y; = FPL(5,5,1,1,%),
y2 = FPL(2,2,2,0,y1), y3 = FPL(5,51,1,y2), y =
FPL(2,2,2,0,y3), where y; is the output of i-th layer. If
y is 5 x 5, then it can be deduced that h;, € [32,35] and
Win € [32,35] according to Theorem

E. Attack-5

In Attack-5, K = (B, Vv, x). The only difference between
Attack-1 and Attack-5 is that the feature extractor is accessed
in the white-box manner in Attack-1, whereas it is accessed
in the black-box manner in Attack-5. The black-box access of
the feature extractor interrupts the backpropagation channel,
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so it is impossible to train the fake sample generator using the
classical backpropagation algorithm [31], [33[]. To address the
issue, our key idea is to employ the zeroth-order method [|12]]
to estimate the gradients backpropagated through the black-
box feature extractor. Like Attack-1, Attack-5 also consists of
three stages.

1) Fake Sample Generator Training Stage. The loss function
used in Attack-5 is the same as the loss function used in
Attack-1 (i.e., Lgany in Eq. (I)) since Attack-1 is the
corresponding white-box version of Attack-5. In Attack-5,
the zeroth-order method is employed to estimate gradients,
making it possible to train the fake sample generator. We use
Fy to represent the black-box feature extractor. To estimate
the gradient of the black-box feature extractor F} on an input
X, the adversary can first evaluate the loss function values
at two very close points X + he and X — he, where h is
a small step size constant and the vector e specifies the
direction on which the gradient is estimated. Accordingly, the
gradient of Fj at X along the direction e can be estimated
as [Fp(X + he) — Fy(X — he)]/2h. It has been proved that
the estimation error can be reduced if h — 0 [12]. Hence,
generator GG can still be well-trained by estimating gradients
passing through the black-box feature extractor.

2) RNet Training Stage and Attack Stage. Once the gradi-
ents are estimated, Attack-5 is reduced to Attack-1, Therefore,
the two stages are the same as Attack-1 (see Section [[TI-A).

F. Remaining Attacks

The remaining attacks include Attack-6, Attack-7, and
Attack-8. Their white-box versions are Attack-2, Attack-3,
Attack-4, respectively. Consequently, all of them can be de-
signed following the same methodology as Attack-5: first
using the same loss function as their corresponding white-
box versions and then employing the zeroth-order method
to estimate the gradients pass through the black-box feature
extractor. Hence, the detailed descriptions of the remaining
attacks are omitted.

IV. EXPERIMENTS
A. Experiment Setup

Datasets. We extract vector datasets from image datasets,

which are introduced as follows. The extracted vector datasets

are used in our experiments. For simplicity, we still use the
name of the image dataset for the corresponding vector dataset.

o MNIST [15]: This dataset contains 70,000 grayscale images
categorized into 10 handwritten digit classes, each being
28 x 28 pixels.

o Fashion-MNIST [42]: This dataset contains 70,000 grayscale
images categorized into 10 clothing classes with each image
sized at 28x28 pixels.

o CIFARI1O0 [26]: This dataset contains 60,000 color images
across 10 distinct classes. Each image is 32 x 32 pixels.

e CelebA [29]]: This dataset contains more than 200,000
colored face images with 40 different binary attributes.
Following [10], we create an 8-class classification task by
concatenating the top three attributes.

Feature Extractors. For each dataset, we employ two com-
monly used DNN-based feature extractors. The used feature
extractors for different datasets are summarized below.

e For MNIST and Fashion-MNIST, we use ResNet18 (default)
[20] and LeNet-5 [27] as feature extractors. To suit the
feature extractor architecture, the original images are resized
to 32x32 pixels in the image pre-processing step.

o For CIFAR10, we use ResNet34 (default) [20] and VGG19
[36] as feature extractors.

o For CelebA, we use IresNetl8 (default) [[17] and Sphere20
[28]] as the feature extractors. The default feature extractor
is IresNet18.

In our experiments, unless explicitly stated, the feature extrac-

tor for each dataset uses the default one marked above. For all

datasets, the feature extractors are pre-trained using supervised
learning. For MNIST, Fashion-MNIST, and CIFAR10 datasets,
we use the popular approach of fine-tuning pre-trained model

[39], by which the feature extractors are first pre-trained on

ImageNet as initialization for fine-tuning. For CelebA dataset,

we adopt the algorithm in Arcface [14]] to pre-train IresNet18

and use the algorithm in Cosface [40] to pre-train Sphere20.

Evaluation Metrics. We use the following metrics to assess

the attack performance.

1) Average pixel difference (AvgPD): AvgPD is defined as
the average pixel-wise distance between the original image
and its reconstructed version. This metric is defined as
AvgPD(x,x') = 77 2%21 |Xm — x|, where M is the
total number of pixels in the image. Generally, the smaller
AvgPD, the better the attack performance.

2) Mean square error (MSE): MSE measures the average
of the squares of the errors. This metric is defined as
MSE(x,x') = ﬁzgﬂ(xm — x!.)?%. Generally, the
smaller MSE, the better the attack performance.

3) Learned perceptual image patch similarity (LPIPS): LPIPS
quantifies image similarity by comparing deep feature
representations from visual models trained with human-
annotated similarity judgments [44]. The LPIPS metric
has been demonstrated to be more consistent with the
human visual system’s perception of image similarity than
the MSE distance. It is defined as LPIPS(x,x') =
S, i S 1y © (x, — x%,,)I[3, where w; con-
tains weights for each of the features in layer j, || - ||2
represents (o distance, and ® denotes the multiplication of
the feature vectors at each pixel by the feature weights.
In addition, x; ~and x'7,, denote the normalized feature
vectors (of x and x’) at layer j with the pixel location at
(h,w). Generally, the smaller LPIPS, the better the attack
performance.

Implementation, Network Architectures, and Training De-

tails. See Appendix

B. Experimental Results for 8 Attacks

Attack-1 & Attack-2.
Visualization Results. Figure [] visualizes some instances of

the ground-truth images and the corresponding reconstructed
images under different attack settings. There are two obser-
vations. First, images reconstructed by Attack-1 and Attack-2
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Fig. 4: Visualization comparison among the ground truth and the corresponding reconstru(ct)eg images in Attack-1 and Attack-2.
The ground-truth images are shown in the first row, whereas the reconstructed images are shown in rows 2-5.

TABLE II: Experimental results in terms of three evaluation metrics under Attack-1 and Attack-2. A-i is the abbreviation for

Attack-i. The symbol | means the smaller the value, the better the attack performance. The best (i.e.,

results are highlighted in Bold.

lowest) quantitative

Datasets | MNIST |

Fashion-MNIST

| CIFAR10 CelebA

Feature extractors ‘ LeNet5 ‘ ResNet18 ‘ LeNet5 ‘

ResNet18 |

VGG19 | IresNetl8 |  Sphere20

Attack types | A-1 | A2 | Al | A2 | Al | A2 | Al

| A2 | A1l | A2 | Al | A2

\
ReNet3d |
| A1 | A2 | A1 | A2

AvgPD | 0.023 | 0.030 | 0.060 | 0.061 | 0.044 | 0.045 | 0.174 | 0.093 | 0.390 | 0.380 | 0.372 | 0.372 | 0.113 | 0.112 | 0.173 | 0.165
MSE/ 0.004 | 0.007 | 0.028 | 0.027 | 0.007 | 0.007 | 0.078 | 0.028 | 0.223 | 0.211 | 0.181 | 0.191 | 0.025 | 0.024 | 0.051 | 0.047
LPIPS | 0.018 | 0.031 | 0.055 | 0.052 | 0.086 | 0.090 | 0.203 | 0.094 | 0.406 | 0.403 | 0.373 | 0.320 | 0.173 | 0.182 | 0.283 | 0.276
are clearly recognizable using two different feature extractors and LPIPS decrease by 9.22% on average.
on MNIST, Fashion-MNIST, and CelebA datasets. However, The attack performance is comparatively worse on CI-

the attack performance is comparatively worse on CIFAR10
dataset. Second, under most circumstances, images recon-
structed using Attack-2 are clearer than those using Attack-1
since the additionally available label information in Attack-2
contributes to the FVIL.

Quantitative Results. Table [[I] shows experimental results in
terms of three evaluation metrics under Attack-1 and Attack-2.
The results are averaged on 1,000 tests. There are three dis-
coveries from Table [l First, both Attack-1 and Attack-2 have
small AvgPD, MSE, and LPIPS on MNIST, Fashion-MNIST,
and CelebA datasets. For instance, we have MSE = 0.004
on MNIST using LeNet-5, MSE = 0.007 on FashionMNIST
using LeNet-5, and MSE = 0.025 on CelebA using IresNet18.
In contrast, the metrics AvgPD, MSE, and LPIPS are relatively
large on CIFARI10 dataset. Second, compared with using
ResNetl18 as the feature extractor, the attack performance is
better if LeNet5 is used. Third, under most circumstances,
Attack-2 achieves better attack performance than Attack-1.
Compared with Attack-1, Attack-2 leads to AvgPD decrease
by 6.75% on average, MSE decrease by 9.33% on average,

FAR10 dataset. This is consistent with the traditional auxiliary-
dataset-available FVI attacks on CIFARI10 dataset. The possi-
ble reason is that images in CIFAR10 have greater varieties.
The limited number of adversary-accessible feature vectors
cannot well cover such varieties, so the well-trained fake
sample generator cannot generate sufficient diversified fake
samples to train FVI-Net with high attack performance. It
requires much more highly diversified feature vectors to train
a good fake sample generator to enhance FVI-Net training.
Hence, the attack performance on CIFARI10 is expected to
be further improved if more diversified feature vectors are
available. Although attack performance on CIFAR10 dataset
is comparatively worse, some reconstructed images still leak
critical information about their original images. For example,
as shown in Figure (in the last row and second column),
a vague vehicle is still recognizable from the reconstructed
image. For the other three datasets, attack performance is
comparatively better, indicating that the proposed FVI attacks
indeed lead to severe security concerns.

Attack-3 & Attack-4. In the two attacks, the adversary cannot

Authorized licensed use limited to: Utah State University. Downloaded on September 16,2025 at 03:14:41 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605268

JOURNAL OF KIEX CLASS FILES, VOL.XXX, NO.XXX, XXXX 2024

MNIST Fashion-MNIST
A 0.95 0.80
480.68 0.81 0.88 0.88 0.87 I 48]0.43 0.53 0.59 0.44 0.22 I
40|0.69 0.840.91 0.87 0.89 40(0.58 0.59 0.66 0.47 0.48
£ =
%32 0.65 0.89.0.91 0.90 540 %32 0.64 066.0.52 036 [0
I I
24/0.82 0.74 0.84 0.82 0.81 24/0.59 0.68 0.64 0.59 0.55
-0.85 -0.65
16/0.81 0.76 0.75 0.59 0.67 16/0.72 0.64 0.58 0.45 0.44
16 24 32 40 48 _ggs 16 24 32 40 48 (g0
Width Width

CIFARI10 CelebA
A 0.650 A 0.45
4810.47 0.61 0.53 0.37 0.31 I 800.34 0.16 0.20 0.13 0.24
40/0.57 0.61 0.41 0.35 0.36 | 0625 72/0.17 0.06 0.16 0.05 0.13
.
32/0.57 0.62.0.38 035 | ) oo _'%64 0.36 0.20-0.21 023 | (s
I
24/0.55 0.62 0.46 0.34 0.36 56|0.20 0.07 0.29 0.03 0.08
-0.450 -0.30
16]0.46 0.48 0.43 0.43 0.37 48(0.18 0.12 0.19 0.18 0.30
16 24 32 40 48 -0300 48 56 64 72 80 g5
Width Width

Fig. 5: ACSR maps of the fake sample generators initialized with different sizes plotted on MNIST, FMNIST, CIFAR10, and
CelebA, respectively. The step size used in LS3 algorithm is 8. Each entry in the map denotes an ACSR value. In each map,
the central entry is the ground-truth size. The largest ACSR is obtained if the tested size matches the ground truth.
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Fig. 6: ACSR maps of the fake sample generators initialized with different sizes plotted on MNIST, FMNIST, CIFAR10, and
CelebA, respectively. The step size used in LS? algorithm is 1. In each map, the central entry is the ground-truth size. The
largest ACSR is obtained if the tested size is close to ground truth.

acquire the size information of the original image, so both
attacks need to invoke the size inference algorithm. If the
size is inferred correctly, Attack-3 and Attack-4 are reduced
to Attack-1 and Attack-2, respectively. Thus, we skip the
attack performance evaluation and focus on evaluating the
performance of the size inference algorithm instead.

Size Inference Algorithm Evaluation.

ACSR Map. When the fake sample generator is initialized with
a certain size, an ACSR score can be computed according to
Eq. (7). Therefore, by varying the size, an ACSR map (in the
form of a 2D matrix) can be plotted. The ACSR map helps
to understand the performance of the proposed LS? algorithm,
so we plot the ACSR map under two cases as follows.

e Case 1 (step size r = 8): We aim to plot the ACSR map of
the fake sample generators initialized with different sizes if the
step size is large (i.e., step size r = 8). Figure [5 plots ACSR
maps of the fake sample generators initialized with different
sizes for different datasets. For MNIST, Fashion-MMIST, and
CIFARI10 datasets, we show the results for the size scope
[16,48]. For CelebA dataset, we show the results for the size
scope [48,80]. It can be observed that ACSR is generally
decreasing with an increasing gap between the tested size and
the ground-truth size. Additionally, the generator initialized
with the ground-truth image size has the largest ACSR. Note
that if we extend the tested size scope, identical observations
can be obtained. Therefore, if the step size is relatively large
(i.e., r = 8), then it is not hard for LS? algorithm to find a
size that is close to the ground truth and then properly shrink
the scope for further size inference.

e Case 2 (step size r = 1): LS? algorithm searches the size
until the step size r = 1. Therefore, we plot the ACSR map
of the fake sample generators initialized with different sizes

if 7 = 1. Figure [§] shows the plotted ACSR map, in which we
have two findings. First, ACSR is generally decreasing with
an increasing gap between the tested size and the ground-
truth size. Second, the initialized size of the generator with
the highest ACSR may have a small error compared to ground
truth. Hence, LS3 algorithm can infer a size that is close to
ground truth.

LS? Algorithm Performance. Table [[II| displays the comparison
between the ground truth and the LS3-inferred size. It is
evident that LS? algorithm is capable of inferring the ground-
truth size (or a size that is very close to the ground truth).

TABLE III: Comparison between the ground truth and LS3-
inferred size.

Datasets | MNIST | Fashion-MNIST | CIFARIO | CelebA

Ground truth 32 x 32 32 x 32 32 x 32 64 x 64

LS3-inferred size | 32 x 30 32 x 32 30 x 32 64 x 63
Fake samples (32>30) Fake samples (64>63)

A\ O] #] 7] LSS S

Reconstructed images (32>30) Reconstructed images (64>63)

FHUEEIR 2R

Ground truth (32>32 Ground truth (64>64
0 /|2 RSkt
(a) MNIST (b) CelebA

Fig. 7: First row: the generated fake samples with inaccurate
inferred size. Second row: reconstructed images with inaccu-
rate inferred size. Third row: the corresponding ground-truth
images.
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TABLE IV: Quantitative results of different attacks and CelebA under white-box setting and black-box setting. A-i is the
abbreviation for Attack-i. The quantitative results in the white-box setting serve as the lower bound of these metrics. The best
(i.e., lowest) quantitative results under the black-box setting are highlighted in Bold.

Dataset-Feature extractor ‘ MNIST-ResNet18

CelebA-IresNet18

|
MA \ B B \ B | w | B \ B \ B | w
Query budget | 18x107 | 18x10% | 18x10° | | 12x10° | 12x10° | 1.2x10' |
Attack types | AS | A6 | AS | A6 | AS | A6 | | A5 | A6 | A5 | A6 | A5 | A6 |
AvgPD| 0316 | 0.162 | 0.079 | 0.079 | 0.063 | 0.065 | 0.060 | 0.164 | 0.170 | 0.152 | 0.138 | 0.127 | 0.125 | 0.112
MSE| 0212 | 0.117 | 0.043 | 0.044 | 0.030 | 0.033 | 0.027 | 0.043 | 0.046 | 0.037 | 0.034 | 0.030 | 0.029 | 0.024
LPIPS| 0288 | 0.169 | 0.086 | 0.089 | 0.064 | 0.097 | 0.052 | 0298 | 0338 | 0.228 | 0.214 | 0.192 | 0.197 | 0.173

Impact of Inferred Size Inaccuracy. As shown in Table the
size inference algorithm may have a small error, so we conduct
experiments to measure the impact of inferred size inaccuracy
on attack performance. According to Table [Tl we set the
inferred size as 32 x 30 on MNIST and set the inferred size as
64 x 63 on CelebA. Figure [7] shows experimental results. We
find that a small error between the inferred size and ground-
truth size only leads to subtle attack performance degradation.

Black-box, query budget=1.8x10" Black-box, query budget=1.2x10°
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Fig. 8: Reconstructed images under the black-box setting (with
different query budgets) in Attack-5 and the white-box setting
(i.e., Attack-1).
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Fig. 9: Reconstructed images under the black-box setting (with
different query budgets) in Attack-6 and the white-box setting
(i.e., Attack-2).

Attack-5 & Attack-6. For simplicity, two representative
datasets (i.e., MNIST and CelebA) are used to evaluate the

attack performance of Attack-5 and Attack-6.
Visulization Results. Figure [§] and Figure [9] visualize some

instances of reconstructed images in Attack-5 and Attack-6 in
different settings. The query budget is the maximum number
of queries allowed to query the black-box feature extractor. For
both Attack-5 and Attack-6, the white-box FVI attack performs
better than their corresponding black-box versions. In addition,
with an increasing query budget, the attack performance of
Attack-5 gradually approaches that of Attack-1 (i.e., the white-
box version of Attack-5). The same law can be discovered
between Attack-6 and Attack-2.

Quantitative Results. Table shows the quantitative results of

Attack-5 and Attack-6 on MNIST and CelebA in terms of three
evaluation metrics under different settings. The quantitative
results of Attack-5 and Attack-6 are consistent with the
visualization results.

Attack-7 & Attack-8. For Attack-7 and Attack-8, the ad-
versary should first infer the original image size. As shown
in experiments in Table [[TI} the size inference algorithm can
infer the ground truth with no or a small error. If the size is
inferred, Attack-7 and Attack-8 are reduced to Attack-5 and
Attack-6, respectively. Thus, the attack performance evaluation
of Attack-7 and Attack-8 is skipped.

C. Impact of Different Factors

Impact of Number of Feature Vectors. We choose Attack-1
on MNIST and CelebA to study the impact of the number of
feature vectors on the attack performance. The laws observed
from Attack-1 are followed by other attacks. Figure [I0] shows
the AvgFD as the function of the number of available feature
vectors in the vector database. Figure [IT] shows the MSE
and the LPIPS as the function of the number of available
feature vectors in the vector database. It can be revealed
from Figure @l that the more feature vectors, the better
the attack performance. Moreover, some private information
(e.g., digit or face characteristics) can be uncovered from the
reconstructed images even if there are only 100 feature vectors
on MNIST and 1,000 feature vectors on CelebA.

Impact of Training Strategies of Feature Extractor. Other
than supervised training of the feature extractor, another
popular strategy is self-supervised learning. Thus, we choose
Attack-1 to study the impact of two distinct training strategies
of feature extractors. The laws observed from Attack-1 are
followed by other attacks. The supervised training strategy
can be found in the experimental setup in Section [V-A] On
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TABLE V: Quantitative results of the feature vector inversion attack on four datasets with two different feature extractor
training strategies: supervised learning and self-supervised learning. The symbol | means the smaller the value, the better the

attack performance.

Dataset MNIST Fashion-MNIST CIFARI10

Feature extractor ResNet18 LeNet-5 ResNet34

Training Strategy ‘ Supervised | Self-Supervised ‘ Supervised | Self-Supervised ‘ Supervised | Self-Supervised
AvgPD| 0.060 0.152 0.044 0.045 0.372 0.427
MSE] 0.028 0.089 0.007 0.008 0.181 0.277
LPIPS| 0.055 0.187 0.086 0.087 0.373 0.333

TABLE VI: Comparison between the attack performance of Attack-1, Attack-2, and the data-available FVI attack (i.e., baseline

attack) in [30].

Datasets | MNIST | Fashion-MNIST | CIFAR10 | CelebA
Attacks Attack-1 Attack-2 | Baseline [30] Attack-1 Attack-2 | Baseline [30] Attack-1 Attack-2 | Baseline [30] Attack-1 Attack-2 | Baseline [30]
AvgPD| | 0.060 0.061 0.058 0.174 0.093 0.081 0372 0372 0.269 0.113 0.112 0.101
MSE| | 0.028 0.027 0.024 0.078 0.028 0.022 0.181 0.191 0.140 0.025 0.024 0.020
LPIPS, | 0.055 0.052 0.051 0.203 0.094 0.130 0373 0320 0399 0.173 0.182 0253
D. Comparsion with Data-Available FVI Attack
0.25 ‘ —— MNIST- ResNet18 : )
l’f 2 CelebA- Iresnet1s We compare our data-free FVI attacks with the prior
auxiliary-data-available FVI attack [30]. In the experiments,
020 we let the adversary have an auxiliary dataset, where its
o cardinality is 10% of the original image dataset. The auxiliary
g 0.15 0.126 dataset is used to train the FVI attack network. Table [V1 shows
> 7 s the comparison between the attack performance of Attack-
0.10 1, Attack-2, and the data-available FVI attack. It is found
the attack performance of Attack-1 and Attack-2 is slightly
worse than the data-available attack. This is because the data-
T T T T —— T u . .
100 500 1000 5000 10000 50000 100000 available attack depends on the strong assumption that the
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Fig. 10: AvgPD v.s. the number of feature vectors.
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Fig. 11: MSE and LPIPS v.s. the number of feature vectors.

MNIST, Fashion-MNIST, and CIFAR10, we choose SimCLR
[13]] (a popular framework for self-supervised learning) as their
training strategy adopted by training feature extractors.

The experimental results are shown in Table [V] It can be
observed that the feature extractors trained via supervised
learning lead to better attack performance than the correspond-
ing ones trained via self-supervised learning. For instance, we
have MSE=0.060 on MNIST using ResNetl8 trained via a
supervised training strategy, whereas we have MSE=0.152 if
a self-supervised strategy is used. The possible reason is that
the feature extractor trained via supervised learning can extract
feature vectors with higher quality. If the feature vectors have
higher quality, then they can be fed to FVI-Net to output
reconstructed images with higher quality, leading to better
attack performance.

adversary has part of the real training dataset.

V. IMPACTS ON PRIOR DATA-AVAILABLE FVI ATTACKS

We note that the proposed output-to-input data generation
technique can be employed in any prior auxiliary-dataset-
available FVI attacks to boost their attack performance. In
the proposed attacks, we develop the output-to-input data
generation technique, which can be employed to augment the
dataset used for training the attack network in the traditional
auxiliary-dataset-available FVI attacks. As a result, the pro-
posed output-to-input data generation technique can be used
in any prior auxiliary-dataset-available FVI attacks (e.g., [30],
[34]) to boost their attack performance, leading to the state-of-
the-art attack performance in the data-available threat model.

TABLE VII: Attack performance of the auxiliary-data-
only FVI attack (Attack I) and the auxiliary-dataset-GANV-
augmentation FVI attack (Attack II). The symbol | means the
smaller the value, the better the attack performance.

Datasets ‘ MNIST ‘ CelebA

Attacks | Attack I Attack I | Attack I Attack I

AvgPD| 0.058 0.04940.009 0.101 0.10040.001
MSE| 0.024 0.0190.005 0.020 0.0204.0.000
LPIPS| 0.051 0.03840.013 0.253 0.17240.069

We conduct the following experiments to confirm our claim.
In our experiments, suppose that the adversary has a small
auxiliary dataset with the same distribution as the original
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dataset. The cardinality of the auxiliary dataset is 10% of
the original image dataset. We use two attack strategies to
train FVI-Net. 1) Auxiliary-Dataset-Only FVI Attack. Since
the auxiliary dataset is available, the adversary can use images
in the auxiliary dataset as outputs and their corresponding
feature vectors as inputs to directly train FVI-Net. 2) Auxiliary-
Dataset-GANV-Augmentation FVI Attack. Other than the aux-
iliary dataset, the output-to-input data generation technique can
be additionally used to augment the original auxiliary dataset
to train FVI-Net. Table exhibits the attack performance
for the two attacks. As expected, the auxiliary-dataset-GANV-
augmentation inversion attack achieves better attack perfor-
mance than the auxiliary-dataset-only inversion attack. For ex-
ample, it holds that LPIPS= 0.253 using the auxiliary-dataset-
only inversion attack on CelebA. Using GANV-augmentation,
we have LPIPS= 0.172, leading to a decrease of 0.069.

Remarkably, in auxiliary-dataset-available FVI attacks, the
adversary can also augment data from the auxiliary dataset
(that serves as the inputs of the feature extractor), so it
is named input-to-input data augmentation technique. The
output-to-input and input-to-input data augmentation tech-
niques are orthogonal (not mutually exclusive), so they can be
used together to increase the diversity of the training dataset
to boost the FVI attack performance.

VI. DEFENSES
A. Defense Methodologies

To defend against targeted attacks (i.e., Attack-1 to Attack-
8), we propose the feature vector perturbation method, in
which slight modifications are enforced on the feature vectors
to mitigate the targeted attacks. The reasons why the feature
vector perturbation method is effective are two-fold.

« R1: If the feature vectors are perturbed, then the distribution
of the GANV-generated fake samples will drift away from
the ground truth. Therefore, when these drifted fake samples
are used to train FVI-Net, the attack performance of FVI-Net
would be reduced.

« R2: Instead of using an original feature vector, if a perturbed
feature vector serves as an input to FVI-Net, the output of
FVI-Net (i.e., the reconstructed image) will be less accurate,
leading to attack performance degradation.

Specifically, we investigate three types of feature vector
perturbation methods, which are introduced below.

o Feature Vector Thresholding (FV-T). For FV-T, in each
feature vector, only the largest k£ percentage of values are
maintained, and the others are set to zero. For instance, FV-T
(Top 45%) means only maintaining the largest 45 percentage
of feature vector entries.

o Feature Vector Noising (FV-N). For FV-N, the Gaussian
noise with standard deviation set to a percentage of the
current feature vector values’ standard deviation is added
to all entries in each feature vector. For example, FV-N
(2 x STD) means adding 2 times of the current feature
vector values’ standard deviation to all entries in each feature
vector.

o Feature Vector Rounding (FV-R). For FV-R, it rounds
feature vectors to specified decimal points, thus decreasing

the resolution of the feature vector values. For instance,

FV-R (INT) denotes all entries in each feature vector are

rounded to an integer.

Since modifications to the feature vectors may reduce their
data utility for downstream tasks, there usually exists a trade-
off between attack resistance performance (i.e., security) and
data utility. Because of the security-utility tradeoff, a suc-
cessful defense should largely reduce the attack performance
while still keeping the data utility as much as possible.
In the following, we conduct experiments to evaluate the
performance of the three feature vector perturbation methods.

B. Defense Experiments

Experimental Setting. For simplicity, we choose the most rep-
resentative attack (i.e., Attack-1) to evaluate the performance
of the proposed defenses.

Evaluation Metrics. To study the tradeoffs between security
and utility, two types of metrics are measured. For security
metrics, we re-use the metrics for measuring the attack per-
formance, including AvgPD, MSE, and LPIPS (see Section
[[V-A). For the utility metric, we use the following three
metircs. First, we use downstream classifier accuracy (DCA),
which is the accuracy of the downstream classifier trained
on the perturbed feature vectors. Second, we use Adjusted
Rand Index (ARI) [25] to evaluate the utility of perturbed
feature vectors if the downstream task is clustering for MNIST,
Fashion-MNIST, and CIFAR-10. Third, as cosine similarity
(CosS) metric is widely used in face recognition tasks, CosS
is employed to assess the similarity between original feature
vectors and perturbed feature vectors on the CelebA dataset.
Both security and utility metrics will be compared with the
baseline (no defense).

Experimental Results. Table summary the detailed
experimental results of the three types of feature vector
perturbation defenses against data-free inversion attacks on
four datasets. As shown in Table the three utility
metrics exhibit similar security-utility tradeoffs across different
datasets when using these defense methods. The defense
performance of each defense is analyzed as follows.

o Feature Vector Thresholding (FV-T). From experimental
results, it can be discovered that FV-T achieves a good
performance in preserving the utility of the vector database
while resisting the inversion attack on Fashion-MNIST
using FV-T (Top 60%), CIFAR10 using FV-T (Top 60%),
and CelebA using FV-T (Top 75%). On MNIST, FV-T (Top
45%) can preserve the utility of the vector database but its
defense performance is not very satisfactory.

o Feature Vector Noising (FV-N). From experimental re-
sults, it is uncovered that FV-N (1 x STD) strikes a
good security-utility tradeoff on MNIST and CIFARI10.
As a numerical example, on MNIST dataset, FV-N (1 x
STD) increases the MSE to 0.228 (up from 0.028 with
no defense), while it only reduces the DCA by 0.01%,
and reduces the ARI by 0.22%. On Fashion-MNIST, FV-
N (0.5 x STD) shows a kind of worse security-utility
tradeoff compared with FV-T (TOP 45%). On CelebA, FV-
N defenses significantly decrease the attack performance.
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However, the data utility after FV-N perturbation is also
seriously damaged.

o Feature Vector Rounding (FV-R). On MNIST, Fashion-

MNIST, and CIFAR10, the measure metrics (including
AvgPD, MSE, and LPIPS) are relatively small with FV-
R defense strategies.
For CelebA dataset, FV-R (INT) significantly decreases the
performance of inversion attacks. However, the data utility
using FV-R (INT) is seriously damaged. For example, FV-
R (INT) defense increases the MSE to 0.248, but it also
reduces the DCA by about 9% and reduces the CosS by
0.14. In conclusion, FV-R is not an ideal defense.

TABLE VIII: Defense performance against the targeted attack
(i.e., Attack-1). The defenses are evaluated by the feature
extractor ResNet18 trained on MNIST. We highlight defenses
with good security-utility tradeoffs in bold.

Defense Method ~ AvgPD? MSE LPIPST DCAT AR}
No Defense 0060 0028 0055 99.58%  96.67%
FV-T (TOP 45%)  0.119 0077 0174  99.57%  97.22%
FV-T (TOP 60%)  0.102  0.062 0119  99.57%  97.12%
FV-T (TOP 75%)  0.092  0.051 0088  99.57%  97.03%
FV-N 2 x STD) 0460 0228  0.550 99.52% 96.17%
FV-N (1 x STD) 0467 0241  0.650 99.57% 96.45%
FV-N (0.5 x STD)  0.080  0.042  0.074  99.58%  96.59%
FV-R (INT) 0.134 0089 0156  99.54%  98.07%
FV-R (0.1) 0071 0036 0067 9957% 97.01%
FV-R (0.01) 0060 0027 0056 99.58%  97.00%

TABLE IX: Defense performance against the targeted attack
(i.e., Attack-1). The defenses are evaluated by the feature
extractor LeNet-5 trained on Fashion-MNIST. We highlight
defenses with good security-utility tradeoffs in bold.

Defense Method AvgPDt MSEt LPIPST DCA?T ARIP
No Defense 0.044 0.007 0.086 89.17%  39.07%
FV-T (TOP 45%) 0.284 0.126 0424 87.03% 44.40%
FV-T (TOP 60%) 0.237 0.094 0387 87.90% 44.79%
FV-T (TOP 75%) 0.141 0.044 0.356 88.58%  39.17%
FV-N (2 x STD) 0.183 0.042 0.352 72.10%  14.16%
FV-N (1 x STD) 0.176 0.043 0.419 80.54%  39.50%
FV-N (0.5 x STD) 0.158 0.039 0.479 84.72%  38.65%
FV-R (INT) 0.063 0.015 0.142 88.12%  44.42%
FV-R (0.1) 0.047 0.008 0.092 88.85%  39.07%
FV-R (0.01) 0.047 0.008 0.090 88.80%  39.08%

TABLE X: Defense performance against the targeted attack
(i.e., Attack-1). The defenses are evaluated by the feature ex-
tractor ResNet34 trained on CIFAR10. We highlight defenses
with good security-utility tradeoffs in bold.

Defense Method AvgPDT MSEtT LPIPST DCA?T ARIT
No Defense 0.372 0.181 0.373 95.38%  87.97%
FV-T (TOP 45%) 0.381 0.192 0.384 9530% 87.97%
FV-T (TOP 60%) 0.393 0.218 0333  9534% 8797%
FV-T (TOP 75%) 0.386 0.211 0.342 9537%  81.97%
FV-N (2 x STD) 0.386 0.200 0.429 94.25%  85.84%
FV-N (1 x STD) 0.392 0.207 0365 95.10% 86.43%
FV-N (0.5 x STD) 0.373 0.169 0.524 95.34%  87.97%
FV-R (INT) 0.380 0.196 0.366 95.26%  79.59%
FV-R (0.1) 0.377 0.195 0.333 95.36%  87.99%
FV-R (0.01) 0.371 0.196 0.338 9537%  87.97%

Explainable Defense Effectiveness. We conduct experiments
to explain why the feature vector perturbation method is
effective. We use t-SNE [22], [37] to visualize distributions
of the GANV-generated fake samples with different defense

13

TABLE XI: Defense performance against the targeted attack
(i.e., Attack-1). The defenses are evaluated by the feature
extractor IresNet18 trained on CelebA. We highlight defenses
with good security-utility tradeoffs in bold.

Defense Method AvgPDT  MSEtT LPIPST DCAT  CosST
No Defense 0.113 0.025 0.173 73.54%  1.000
FV-T (TOP 45%) 0.189 0.060 0.440 70.97%  0.844
FV-T (TOP 60%) 0.179 0.052 0407  71.69%  0.874
FV-T (TOP 75%) 0.176 0.051 0.371 72.09%  0.899
FV-N (2 x STD) 0.265 0.110 0.747 30.64%  0.320
FV-N (1 x STD) 0.248 0.097 0.752 36.09%  0.518
FV-N (0.5 x STD) 0.238 0.091 0.747 45.84%  0.736
FV-R (INT) 0.248 0.100 0.617 64.57%  0.860
FV-R (0.1) 0.144 0.037 0.242 72.60%  0.999
FV-R (0.01) 0.134 0.032 0.221 73.56%  1.000

strategies, without defense, and the original images (i.e.,
ground truth) on four datasets, as shown in Figure [1;2} We
discover that the distribution of GANV-generated fake data
is close to the ground truth if there is no defense. However,
if defenses are employed, the distributions of the GANV-
generated fake samples will drift away from the ground truth,
thereby confirming the correctness of R1 (see Section [VI-A).
Additionally, the larger the discrepancy between the GANV-
generated fake samples, the better the defense performance.
For instance, as shown in Figure@], the distribution of GANV-
generated fake samples with FV-N (2 x STD) defense is far
from the ground truth among four datasets. Consequently, FV-
N (2 x STD) defense achieves good resistance to the targeted
attacks as shown in Table [VIIIHXTl

VII. RELATED WORK

In this section, we review the related work on generative
neural networks and data reconstruction attacks.
Generative Adversarial Networks. Generative adversarial
network (GAN) is first proposed in [[19]]. Classic GAN usually
comprises a generator that produces an image and a discrimi-
nator that determines whether a generated image is real or fake.
Remarkably, the GANV used in our attacks is different from
the classical GAN in two-fold. First, a fixed neural network
(i.e., feature extractor) is inserted between the generator and
the discrimination in GANV. Second, in the classical GAN,
the discriminator is used to distinguish between two images. In
contrast, in our GANYV, the discriminator is used to distinguish
between two extracted feature vectors.
Data Reconstruction Attacks. Data reconstruction attacks
aim to reconstruct the original data from various information
leaked to the adversary. According to the types of leaked
information, such attacks can be divided into four types:
gradient-based attacks [[7], [18], [23]], [43], [49]], model-based
attacks [8]], [90, [21]], [47], [48], feature vector-based attacks
[16], [30], [34], [35], and other-information-based attacks [0,
(321, [38]], [45], [46]. This paper belongs to the feature vector-
based attacks. Unlike previous feature vector-based attacks
that require the availability of an auxiliary dataset, this work
mainly focuses on the data-free setting, in which the adversary
has no auxiliary dataset.
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Fig. 12: Applying t-SNE to visualize distributions of the GANV-generated fake samples with different defense strategies,
without defense, and the original images (i.e., ground truth) on four datasets.

VIII. CONCLUSION

In this work, we have conducted the first systematic study
of FVI attacks against vector databases in the data-free setting.
Our key innovation is to develop multiple techniques/strategies
(including output-to-input data generation technique, accel-
erable CBG search strategy, and downstream-classifier-aided
generator training strategy) to realize the data-free FVI at-
tacks. In addition, we empirically identify multiple factors
that influence the attack performance. Based on our study on
8 types of FVI attacks, it holds that the more background
knowledge and capabilities the attacker owns, the higher the
attack performance. It should be highlighted that the proposed
FVI attack technique in the data-free setting can be directly
employed to boost the attack performance of prior FVI attacks
in the data-available setting, thereby leading to further impacts
on the FVI attack research.

One limitation of this paper is that we only study FVI
attacks on image data. However, the proposed data-free FVI
attack can be applied to other data modalities, such as text and
audio. For text and audio, the FVI attack performance varies
depending on multiple factors, including the vector database
size, the information entropy contained in the data, etc. For
graph data, it is difficult to launch successful data-free FVI
attacks because uniform graph embeddings can be produced
from heterogeneous graph data (with different numbers of
nodes and edges). We do not study these attacks in this paper
due to the lack of space. In our future work, we will study
FVI attacks on other modalities.
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