BFastPay: A Routing-free Protocol for Fast Payment
in Bitcoin Network

Xinyu Lei, Guan-Hua Tu, Tian Xie, Sihan Wang
Department of Computer Science and Engineering
Michigan State University
East Lansing, Michigan, USA
{leixinyu, ghtu,xietian1,wangsih3}@msu.edu

ABSTRACT

Bitcoin is the most popular cryptocurrency which supports paymen-
t services via the Bitcoin peer-to-peer network. However, Bitcoin
suffers from a fundamental problem. In practice, a secure Bitcoin
transaction requires the payee to wait for at least 6 block confirma-
tions (one hour) to be validated. Such a long waiting time thwarts
the wide deployment of the Bitcoin payment services because many
usage scenarios require a much shorter waiting time. In this paper,
we propose BFastPay to accelerate the Bitcoin payment validation.
BFastPay employs a smart contract called BFPayArbitrator to host
the payer’s security deposit and fulfills the role of a trusted pay-
ment arbitrator which guarantees that a payee always receives the
payment even if attacks occur. BFastPay is a routing-free solution
that eliminates the requirement for payment routing in the tra-
ditional payment routing network (e.g., Lightning Network). The
theoretical and experimental results show that BFastPay is able to
significantly reduce the Bitcoin payment waiting time (e.g., from
60 mins to less than 1 second) with nearly no extra operation cost.

CCS CONCEPTS

« Security and privacy — Distributed systems security; Secu-
rity protocols.

KEYWORDS
Blockchain; Bitcoin; Smart Contract; Fast Payment

ACM Reference Format:

Xinyu Lei, Guan-Hua Tu, Tian Xie, Sihan Wang. 2021. BFastPay: A Routing-
free Protocol for Fast Payment in Bitcoin Network. In Proceedings of the
Eleventh ACM Conference on Data and Application Security and Privacy
(CODASPY ’21), April 26-28, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3422337.3447823

1 INTRODUCTION

Bitcoin as a decentralized payment solution is increasingly gaining
recognition and acceptance. For example, it has been accepted by
many famous retailers and service providers such as Microsoft [10]
and Samsung [15]. Nevertheless, Bitcoin suffers from a key problem.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY 21, April 26-28, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8143-7/21/04...$15.00
https://doi.org/10.1145/3422337.3447823

In practical applications, the payee needs to wait for 6 block confir-
mations (ave. 60 mins) for validating a Bitcoin transaction to defend
against the potential double-spending attack launched by the payer.
A shorter waiting time increases the risk of the double-spending
attack in which the payer spends the same Bitcoin more than once
and the payee loses the commodities/services without receiving the
Bitcoin payment. The one-hour waiting time has seriously impeded
the wide adoption of Bitcoin payment services because many busi-
nesses (e.g., vending machines) expect a much shorter waiting time.
This problem is one of the most fundamental open problems of Bit-
coin. In the past decade, researchers have devoted great efforts to
address the problem, but no perfect solutions have been developed
yet. We are thus motivated to seek for alternative approaches to
address this critical problem.

In this paper, we aim to develop a new Bitcoin payment pro-
tocol that satisfies the following requirements. (1) Mainly using
Bitcoin. The solution should enable users to use Bitcoin as the
major payment cryptocurrency instead of requiring users to adopt
other cryptocurrencies. (2) Short waiting time. The time required
for the payee to validate a Bitcoin payment should be short while
still defending against the double-spending attacks. (3) Decentral-
ization. The solution should preserve Bitcoin’s decentralization
feature: no reliance on any centralized trusted third party is re-
quired. (4) Low-cost. The extra operation cost should be low.

The limitations of the prior art are discussed as follows. (1) Non-
Bitcoin-based. One straightforward solution is to enforce users
to use some other cryptocurrencies with faster transaction valida-
tion time. However, since Bitcoin has dominated in practical usage
[1], it is desirable to develop solutions to support fast Bitcoin pay-
ment while keeping Bitcoin as the major payment currency. (2)
Prevention-based. The solutions proposed in [20, 24, 30] deploy
observers in the Bitcoin network to detect the conflicting Bitcoin
transactions (i.e., multiple transactions that spent the same Bitcoin).
The prevention-based solutions are not highly reliable since the
conflicting Bitcoin transactions detection is probabilistic. (3) Se-
cure wallet-based. Secure wallet-based solutions [22, 35] require
users to trust the secure wallet, so they cannot ensure decentraliza-
tion. (4) Escrow-based. The Lightning Network [31] and Duplex
Micropayment Channels [21] are escrow-based solutions which
support fast payment via payment routing network. Researchers
have developed various solutions [29, 32, 34] to improve the rout-
ing performance, but the current escrow-based solutions still only
support micropayments. Recently, a solution named Snappy is pro-
posed in [26]. Snappy employs a majority-based governance model,
which requires a group of payees (i.e., merchant) to serve as state-
keepers to prevent double-spending attacks. It is hard to claim that

https://doi.org/10.1145/3422337.3447823
https://doi.org/10.1145/3422337.3447823

Snappy preserves decentralization (as it is in Bitcoin) because the
majority-based governance model requires coordination between
a group of nodes. However, the concept of decentralization in Bit-
coin can be achieved without any coordination between nodes (i.e.,
Bitcoin network is a decentralized self-sustainable system).

To support fast payment in the Bitcoin network, we propose
an inter-blockchain escrow approach (i.e., BFastPay) in this pa-
per. BFastPay is a general approach that can be deployed on any
programmable smart contract (PSC)-supported blockchain plat-
form (e.g., Ethereum [7], EOSIO [5]). BFastPay is called an inter-
blockchain (or cross-blockchain) escrow approach since the securi-
ty deposit (i.e., collateral) is escrowed on another PSC-supported
blockchain. BFastPay is designed based on two key insights. First,
BFastPay employs a decentralized smart contract called BFPayArbi-
trator to host the payer’s security deposit and fulfill the role of a
trusted payment arbitrator which guarantees that a payee always
receives the payment even if attacks occur. Note that BFastPay pre-
serves the decentralization feature if the underlying PSC-supported
blockchain employs a decentralized consensus algorithm. Second,
BFastPay takes advantage of the fast consensus property of emerg-
ing PSC-supported blockchains (e.g., EOSIO blockchain only needs
less than 1 second to validate a transaction [5]) to reduce the waiting
time of the Bitcoin transaction. More specifically, BFastPay work-
s as follows. At first, a payer escrows sufficient security deposit
into BFPayArbitrator. While the payer submits a Bitcoin transac-
tion to the Bitcoin network, (s)he simultaneously submits a Bitcoin
fast payment request (BFPayReq) message to BFPayArbitrator. The
BFPayReq message contains all information that BFPayArbitrator
needs to make the arbitration if a payment dispute arises later.
Once the BFPayReq transaction is successfully validated in the PSC-
supported blockchain, the payee can deliver commodities/services
to the payer. Hence, the waiting time is reduced to the time needed
to validate a transaction on the PSC-supported blockchain. If there
is a payment dispute later, BFastPay allows both parties to submit
evidence to prove that they are the honest parties. If the payee
successfully proves that (s)he does not receive Bitcoin payment, BF-
PayArbitrator pays the payee using the security deposit. Otherwise,
the security deposit still belongs to the payer.

The major technical challenge is that it is hard for BFPayArbi-
trator to recognize the dishonest party in a payment arbitration
because BFPayArbitrator cannot access Bitcoin blockchain (i.e., the
inter-blockchain transaction validation is hard). In a payment arbi-
tration, both the payer and the payee have incentives to upload fake
evidence to BFPayArbitrator. The payer may submit fake evidence
to cheat BFPayArbitrator that the Bitcoin has already paid, while
the payee may also submit fake evidence to cheat BFPayArbitrator
that no Bitcoin payment is received. However, BFPayArbitrator is
unable to distinguish which party is dishonest without accessing the
canonical Bitcoin blockchain to obtain the ground truth. To address
this challenge, we develop a Bitcoin proof-of-work (PoW)-based
payment arbitration mechanism for BFPayArbitrator to identify
the dishonest party. The key idea is that our PoW-based arbitration
mechanism enables the honest party (either the payer or the payee)
to generate a valid proof from the Bitcoin subchain, whereas the
dishonest party cannot. Hence, the Bitcoin miners automatically
and unconsciously help the honest party to generate a valid proof to
win the payment arbitration. The dishonest party has to defeat all

Bitcoin miners in the mining race to win the payment arbitration,
so it is hard for the dishonest party to win the payment arbitration.
In summary, this paper has three main contributions.

(1) We take the first step forward to study the inter-blockchain e-
scrow protocol, BFastPay, which enables the Bitcoin blockchain

to employ the fast consensus property of PSC-supported blockchain-

s (which may adopt more advanced consensus techniques) to
reduce its payment waiting time without requiring any modifi-
cation on the current Bitcoin protocols.

(2) We develop a novel PoW-based mechanism for a smart con-
tract BFPayArbitrator without accessing the Bitcoin blockchain
to arbitrate whether a Bitcoin transaction has been success-
fully included into the Bitcoin blockchain or not. Therefore,
BFPayArbitrator can ensure payment fairness.

(3) Our theoretical analysis and experimental results demonstrate
that BFastPay achieves multiple design goals simultaneously.
It is a secure, fast, decentralized, low-cost, and routing-free
payment scheme.

The rest of the paper is organized as follows. Section 2 introduces
some background knowledge. In Section 3, we introduce the adopt-
ed threat model and assumptions. Section 4 presents an overview
of BFastPay. The arbitration mechanism used by BFastPay is illus-
trated in Section 5. Section 6 performs security analysis. Section
7 evaluates the operation cost of BFastPay. Section 8 compares
BFastPay with the state-of-the-art solution. Section 9 reviews the
related work. Some conclusions are given in Section 10.

2 PRELIMINARIES

This section introduces the preliminaries of the Bitcoin blockchain
and programmable smart contract (PSC)-supported blockchains.

Bitcoin Blockchain. The Bitcoin blockchain [28] is a shared pub-
lic ledger on which all Bitcoin transactions are recorded. Numer-
ous Bitcoin transactions are put into a new block and appended
to the blockchain in chronological order. When a block that con-
tains a new Bitcoin transaction has been appended to the Bitcoin
blockchain, this transaction has one block confirmation. When a
subsequent block is appended to the blockchain, the number of
block confirmation for this transaction is increased by one [4]. The
current practice for accepting a secure Bitcoin transaction is: wait-
ing for such transaction to have 6 block confirmations. Note that 6
block confirmations are based on an assumption that adver-
saries do not control more than 10% of the global hash power
of the Bitcoin network and a double-spending probability of
less than 0.1% is acceptable [28]. Bitcoin network refers to the
collection of nodes (e.g., miners, wallets) running the Bitcoin P2P
protocol. The Bitcoin network uses a PoW-based method for reach-
ing a consensus between different miners. The miner who can solve
the hash-based PoW puzzle wins the right to produce a new block
for the blockchain. A Bitcoin block header is 80 bytes containing
information of (1) previous block hash field, (2) Merkle root field, (3)
nonce field, etc. In the mining process, the miners try to find a nonce
such that the mined block header meets the current Bitcoin network
difficulty target, i.e., Hash(block header) < BTC_diff_target.

PSC-Supported Blockchains. Nowadays, blockchain technology
is evolving beyond just supporting a cryptocurrency. Some emerg-
ing blockchains (e.g., Ethereum, EOSIO) support rich programmable

Table 1: The consensus mechanisms and transaction validation time of different PSC-supported blockchains.

Blockchain type Blockchain | Consensus mechanism ‘ Ave. tx validation time
Non-PSC-supported Bitcoin Hash-based proof-of-work (PoW) protocol ~ 60 mins
blockchain

Ethereum Modified “Greedy Heaviest Observed Subtree" (GHOST) protocol [7] ~ 3 mins

EOS Asynchronous Byzantine Fault Tolerance (aBFT) protocol [5] < 1 second
PSC-supported Stellar [18] Federated Byzantine Agreement (FBA) protocol [18] < 5 seconds
blockchain Cardano [25] | Ouroboros Proof-of-Stake (PoS) protocol [25] < 5 mins

NEO [11] Delegated Byzantine Fault Tolerant (dBFT) protocol [11] ~ 15 seconds

smart contract functionalities. A smart contract model typically
consists of program code (run on the blockchain), a storage file
(stored on the blockchain), and an account balance (recorded on
the blockchain). A user can deploy a smart contract by posting a
transaction to the blockchain. A user can send a message (via a
transaction) to a smart contract to trigger its function execution.
All content of the blockchain, smart contracts, and transactions
is publicly visible. The smart contract can partially fulfill the role
of a trusted third party. After auditing from involved users and
validating on the PSC-supported blockchain, the smart contract
code is immutable, and all code executes exactly according to how
it was programmed. Hence, the smart contract can support the
program-controlled fund transfer. The fund managed by the smart
contract is represented in the form of token. For example, Ethereum
blockchain uses ETH token and EOSIO blockchain uses EOS token.

As shown in Table 1, different blockchains exploit different con-
sensus mechanisms, resulting in the different time needed to validate
a transaction. Compared with Bitcoin, many recently developed
PSC-supported blockchains have a shorter transaction validation
time. For instance, as analyzed in [12], Ethereum needs about 12
confirmations (about 3 mins) to achieve a similar degree of security
as 6 confirmations (about 60 mins) on Bitcoin blockchain.

3 THREAT MODEL AND ASSUMPTIONS

Threat Model. The security threat mainly comes from the payer
or the payee. (1) Payer. The payer may double-spend the Bitcoin
and hence no Bitcoin payment will be received by the payee. Addi-
tionally, the payer attempts to win the payment arbitration to avoid
releasing the security deposit to the payee. If the payer successfully
double-spends the Bitcoin and wins the arbitration, then the payee
loses the commodities/services without receiving any payment.
This attack is a double-spending attack. (2) Payee. The payee is
considered as a semi-benign entity. The payee may still raise a dis-
pute and hope to win the arbitration even if (s)he has received the
Bitcoin payment. If the payee wins the arbitration, then (s)he can
receive payments twice. This attack is a double-payment attack.
We do not consider the risk that the payee refuses to deliver com-
modities/services to the payer even if the payer correctly finishes
the payment phase required by BFastPay because such risk exists
in any payment method. Therefore, handling such risk is out of the
scope of this paper. We note that this problem has been studied in
[23].

Assumptions. We have the following assumptions. (1) Both the
payer and payee are rational and they would defend for their own

interests (e.g., the payer/payee would take actions to thwart any
double-payment/double-spending attempt). (2) Both the payer and
the payee can control a portion of the global Bitcoin hash power to
launch attacks. However, either payer or payee cannot control more
than 50% of the global hash power for Bitcoin mining. We assume
that the remaining hash power is controlled by honest miners, who
work together to extend the longest Bitcoin blockchain as stipulated
by the Bitcoin protocol. (3) The smart contract platforms adopted
by BFastPay are secure. We admit that some existing smart contract
platforms have security vulnerabilities. However, developers have
devoted great efforts to fix the known vulnerabilities and bring
them into real-world applications. (4) Both the payer and payee
have fairly reliable Internet connections during BFastPay service.

4 BFASTPAY OVERVIEW

In this section, we first briefly describe BFastPay flowchart and
then clarify how to use the security deposit in BFastPay.

4.1 BFastPay Flowchart

Figure 1 depicts BFastPay flowchart, which consists of two phases:
the payment phase and the arbitration phase.

Payment Phase. There are three steps (steps 1-3 in Figure 1) in
this phase.

(1) Before using the BFastPay service, the payer agent should first
escrow sufficient security deposit to BFPayArbitrator which is
deployed on a PSC-supported blockchain. The security deposit
is added to BFPayArbitrator via a transaction sending from the
payer’s PSC-supported blockchain account address Payer_addr
to BFPayArbitrator. Then, the payer agent can send a Bitcoin
transaction to the payee.

(2) While the payer agent broadcasts the Bitcoin transaction to
the Bitcoin network, the payer agent simultaneously submits a
BFPayReq message to BFPayArbitrator. The BFPayReq message
consists of (1) the Bitcoin payment information, (2) the Bitcoin
blockchain information, (3) the PSC-supported blockchain in-
formation, and (4) the transaction amount. Table 2 summaries
all of the information carried in the BFPayReq message. Note
that the payer needs to refer to the public sources (e.g., [3])
to get the real-time conversion rate between bitcoin and the
PSC-supported blockchain token to compute the amount of
token with a matching value. BFastPay uses the conversion
rate when the Bitcoin transaction occurs. Future conversion
rate fluctuations do not affect the fairness of the transaction.

Payer 0. Security deposit BFPayArhbitrator Payee
agent 1. Bitcoin transaction g L agent
2. Sends BFPayReq >
1 N > B
. . Checks if some
Rejects the payment: equirements ol
Yes, accepts and delivers
5. Sends P Chall \ 4 4. Raises a dispute by sending commodities/services
No dispute - Sends PaymentChallenge L NonPaymentProof No dispute
> 6. Arbitration <
If payer wins, the security deposit If payee wins, pays the payee using the security | - 7'
still belongs to the payer deposit >
v v v v v

Terminates

Terminates

Figure 1: The flowchart of BFastPay.

(3) The payee agent receives the BFPayReq message and checks
if the following two requirements hold. (1) Each field of the
BFPayReq message is correct!. (2) The payer’s available se-
curity deposit should not be less than the escrowed Bitcoin
transaction amount?. If the payee agent finds any field in the
BFPayReq message is incorrect or the security deposit is insuffi-
cient, the payee rejects the Bitcoin transaction. Otherwise, the
payee waits for BFPayReq to be validated by the PSC-supported
blockchain before accepting the Bitcoin transaction and deliv-
ering commodities/services to the payer. The waiting time is
thus reduced to be the time needed to validate a transaction on
the PSC-supported blockchain.

Arbitration Phase. If the payee agent successfully receives the Bit-
coin payment later and does not raise a dispute during a pre-defined
arbitration time window, then the BFastPay service life cycle fin-
ishes and terminates. Otherwise, BFastPay allows the payee agent
to raise a dispute by sending NonPaymentProof to BFPayArbitrator.
Then, the BFastPay arbitration phase is activated. Note that there
are no attacks in the vast majority of real-world Bitcoin pay-
ment cases, so the arbitration phase is rarely activated. There
are three steps (steps 4-6 in Figure 1) in the arbitration phase.

(1) To raise a dispute, the payee agent needs to generate NonPay-
mentProof and submits it to BFPayArbitrator for arbitration
within a pre-defined arbitration time window.

(2) The payer agent examines BFPayArbitrator to check if there
is a NonPaymentProof message received by BFPayArbitrator
during the arbitration time window. If the payer finds that Non-
PaymentProof message is received, BFPayArbitrator allows the

ITo check the correctness of BFPayReq message, the payee can refer to the trust
sources and make a field-to-filed comparison. More specifically, the payment infor-
mation (BTC_TxID, BTC_Tx_time) and blockchain information (BTC_diff_target,
Block_hash) is public on the Bitcoin Blockchain. The correct PSC-supported
blockchain information (Payer_addr, Payee_addr) is also known by the payee. In
addition, the transaction amount (Token_amount) can be computed by the payee
because the real-time conversion rate is publicly accessible by the payee.

2The adopted check mechanism is exactly the same as the mechanism used in the
cash-based payments: after the payer gives cash to the payee, the payee must check
and ensure that (1) it is not the fake cash and (2) the amount of cash is sufficient before
accepting it.

Table 2: The information in BFPayReq message.

‘ Element type ‘ Field name Description ‘
X BTC_TxID The Bitcoin transaction ID
Payment info - — —
BTC_Tx_time The Bitcoin transaction time

X Current Bitcoin network
BTC_diff_target
difficulty target

The hash of the latest Bitcoin

Blockchain info

Block_hash block header that does not
include the escrowed Bitcoin tx
Payer_addr The payer’s PSC-supported
PSC-supported blockchain account address
blockchain info Payee_addr The payee’s PSC-supported

blockchain account address

The amount of token needs

Transaction amount | Token_amount to transfer to the payee if a

double-spending attack occurs

payer to generate PaymentChallenge and to send it to BFPa-
yArbitrator within a pre-defined rebuttal time window.

(3) BFPayArbitrator arbitrates the dispute based on the received
NonPaymentProof and PaymentChallenge. If the payee wins
the dispute, BFPayArbitrator pays the payee using the payer’s
security deposit. Otherwise, the security deposit still belongs to
the payer. After the arbitration process, the BFastPay service
finishes and terminates.

The detailed arbitration mechanism is further described in Sec-
tion 5. Note that no manual operations are needed in using B-
FastPay. The payer agent and payee agent (e.g., smartphone) run
BFastPay software to automatically finish the required operations.
The software modules of BFastPay are introduced in Section 7.1.

4.2 Security Deposit Clarification

The security deposit in BFPayArbitrator has two states: free and
frozen. Consider that the payer has a security deposit worth S;
dollars and a BFastPay Bitcoin payment has a transaction amount

worth Sy dollars, where S; > Sz. Then, during the service life cycle
of BFastPay, BFPayArbitrator freezes Sy dollars. The remaining
(81 — S2) dollars are free. After the termination of a BFastPay fast
payment service, if the frozen security deposit does not release to
the payee, then it will be free again. The free deposit can be used
for concurrent or future BFastPay fast payment services. Therefore,
if both parties are honest (the vast majority of cases), the payer can
enjoy a one-time deposit and permanent BFastPay fast payment
services. Note that the payer can withdraw free security deposit to
his own account at any time.

5 BFASTPAY ARBITRATION

In this section, we describe (1) how to design NonPaymentProof
and PaymentChallenge, (2) how to check the validity of NonPay-
mentProof and PaymentChallenge, and (3) the detailed PoW-based
arbitration mechanism used in BFPayArbitrator.

5.1 NonPaymentProof Design and Validation

In an arbitration, to convince BFPayArbitrator that the escrowed
Bitcoin transaction is not included in the Bitcoin blockchain, the
payee needs to submit NonPaymentProof to BFPayArbitrator. Non-
PaymentProof contains a number of linked block headers (named
block header proof’). The Block header proof here is used to prove
that sufficient PoW has been done to extend the Bitcoin blockchain,
in which the escrowed Bitcoin transaction is not included. Figure 2
illustrates the structure of the block header proof. The number of
the linked block headers in the block header proof is defined as the
length of NonPaymentProof (denoted as ny).

Block header proof
|

- /Block header (No. 1) Block header (No. nl)%
[Previous hash |[Nonce | |y ...__y| [Previous hash][Nonce |

Merkle root | [-] Merkle root | [-]

Hashlz Hashsy

Merkle
proof

Merkle

| Hash, || Hash, | [Hashs | [Hash, |
tree

—

Lo J[ve |l [o |

Figure 2: The structures of the block header proof and the
Merkle proof.

A valid NonPaymentProof should satisfy the following four re-
quirements (R1)-(R4).

e (R1) The block headers meet the current Bitcoin difficulty tar-
get: Hash(block header No. i) < BTC_diff_target, for i =
1,---,n1.

e (R2) The block headers indeed form a linked blockchain:
Hash(block header No. i) = the previous hash field in block
header No.i+1,fori=1,---,n1 — 1.

e (R3) The block header chain indeed extends from the latest
Bitcoin block when the escrowed Bitcoin transaction occurs: the
previous hash field in the first block header equals Block_hash.

o (R4) The escrowed Bitcoin transaction is not included in the
first block header in NonPaymentProof.

On receipt of NonPaymentProof, BFPayArbitrator can check
whether the requirements (R1)-(R3) are satisfied or not, but it can-
not check whether the fourth requirement (R4) is satisfied or not
(it is hard to prove non-inclusion of a transaction. For example, the
classic Merkle proof [28] can prove inclusion but not non-inclusion).
To prevent the payee from submitting NonPaymentProof which
does not satisfy the requirement (R4), BFastPay allows the pay-
er to reveal such cheating behavior of the payee by submitting
PaymentChallenge (by using the Merkle proof) to prove that the
escrowed Bitcoin transaction is included in the first block header of
NonPaymentProof. If there is no such PaymentChallenge received
and the requirements (R1)-(R3) are satisfied, then NonPayment-
Proof is treated to be valid. Otherwise, it is invalid.

5.2 PaymentChallenge Design and Validation

On receipt of NonPaymentProof, BFPayArbitrator checks if one
of the requirements from (R1)-(R3) is not satisfied. If yes, BFPa-
yArbitrator directly lets the payer win the arbitration without any
requirements for PaymentChallenge. If no, the payer needs to sub-
mit PaymentChallenge to BFPayArbitrator. There are two cases as
described below.

Case 1: NonPaymentProof Satisfies Requirement (R4). In this
case, PaymentChallenge consists of two components: the block
header proof and the Merkle proof. (1) Block Header Proof. The
block header proof in PaymentChallenge is used to prove that
sufficient PoW has been done to extend the Bitcoin blockchain.
Figure 2 depicts the structure of a block header proof. The number
of the linked block headers in the block header proof is defined
as the length of PaymentChallenge (denoted by nz). A valid block
header proof should satisfy the requirements (R1)-(R3) as stated
in Section 5.1. (2) Merkle Proof. The Merkle proof is used to prove
that the escrowed Bitcoin transaction is indeed included in the
first block header of the block header proof. The Merkle proof is
generated from a Merkle tree, as shown in Figure 2. The Merkle
tree has a number of leaf nodes at the bottom of the tree containing
hashes of each transaction in a Bitcoin block. An intermediate node
in the tree is the hash of its two children. Finally, a single root node
(called a Merkle root) can be obtained. How to generate and validate
the Merkle proof can be illustrated by the following example. As
shown in Figure 2, in order to validate the inclusion of txs, the
payer only needs to provide a Merkle proof, which consists of two
parts: (1) the Merkle branch [Hashy, Hashi2], and (2) the branch
position [right, left]. To validate the Merkle proof, BFPayArbitrator
computes

Hashs = Hash(txs),
Hashs4 = Hash(Hashs||Hashy), (Hashs on right),
Hashi234 = Hash(Hashy,||hashss), (Hashiz on left),

where || represents concatenation. If Hash1234 equals the Merkle
root of the first block header, then txs is indeed included in the block
header. If the Merkle proof in PaymentChallenge can successfully
prove the inclusion of the escrowed Bitcoin transaction, then it is
valid. Otherwise, the Merkle proof is considered to be invalid. Note
that PaymentChallenge is valid if both its block header proof and
Merkle proof are valid. Otherwise, it is invalid.

Case 2: NonPaymentProof Does not Satisfy Requirement (R4).

In this case, PaymentChallenge only contains the Merkle proof,
which is submitted to BFPayArbitrator to prove that NonPayment-
Proof does not satisfy requirement (R4). In other words, the Merkle
proof is used to prove that the escrowed Bitcoin transaction is in-
deed included in the first block header of NonPaymentProof. The
inclusion-proof process is exactly the same as described above. If
the Merkle proof successfully proves that NonPaymentProof does
not satisfy the requirement (R4), then PaymentChallenge is valid.
Otherwise, it is invalid.

5.3 PoW-based Arbitration Mechanism

We next introduce the arbitration window and rebuttal time window
settings. Then, we describe the PoW-based arbitration mechanism.
Last, the strategy which can ensure the honest party to win is
illustrated.

Arbitration and Rebuttal Time Window Settings. Let T, de-
note the elapsed time since the Bitcoin transaction is broadcast
to the Bitcoin network. The arbitration time window is set to be
[T; — €, T;] and the rebuttal time window is set to be [T, T; + €].
We set € to be 5 mins in BFastPay. To simplify our theoretical
analysis later, we treat that both the payee and the payer submit
their evidence (i.e., NonPaymentProof and PaymentChallenge) for
arbitration at the same time point T;. The adjustable parameter T
is also called the mining competition time period.

Arbitration Mechanism. The key mechanism in the payment ar-
bitration is: If both NonPaymentProof and PaymentChallenge
are valid, the winner is the party who submits a block header
proof that carries more PoW. The precise and complete logic of
the arbitration mechanism is illustrated as follows.

e Case 1 (NonPaymentProof does not satisfy the requirements
(R1)-(R3)): the payer wins.

e Case 2 (NonPaymentProof satisfies the requirements (R1)-(R3)
but no PaymentChallenge is received): the payee wins.

o Case 3 (NonPaymentProof satisfies the requirements (R1)-(R3)
and PaymentChallenge with only Merkle proof is received): if
PaymentChallenge is valid, then the payer wins. Otherwise, the
payee wins.

e Case 4 (NonPaymentProof satisfies the requirements (R1)-(R3)
and PaymentChallenge with both the block header proof and
the Merkle proof is received): if PaymentChallenge is invalid,
then the payee wins. Otherwise, the winner is the party who
submits a block header proof that carries more PoW. In the case
of a tie, BFPayArbitrator lets the payee win. Mathematically,
recall that the block header lengths of NonPaymentProof and
PaymentChalleng are denoted as nq and ny, respectively. A sim-
plified description is: if ny > ny, then the payee wins; otherwise,
the payer wins.

Strategy of the Honest Party. To ensure the honest party to win
the arbitration, BFastPay leverages the following strategy. There
are two cases.

e Case 1 (the escrowed Bitcoin transaction is not included in
the Bitcoin blockchain): in this case, the payee is the honest
party who can directly truncate a segment of the block header
chain from the Bitcoin blockchain to generate a long valid
NonPaymentProof (the truncated block header chain segment

starts with the block header in which the previous hash field
equals Block_hash (see Table 2) and ends with the latest block
header). If the payer adopts the same strategy as the payee, the
payer cannot get a valid PaymentChallenge simply because
the escrowed Bitcoin transaction is not included in the Bitcoin
blockchain so that a valid Merkle proof of inclusion cannot be
generated by the payer. Therefore, the dishonest party (i.e., the
payer) has to fabricate PaymentChallenge.

Case 2 (the escrowed Bitcoin transaction is included in the Bit-
coin blockchain): in this case, the payer is the honest party who
can directly truncate a segment of block header chain from the
Bitcoin blockchain to generate a long valid PaymentChallenge,
whereas the dishonest party (i.e., the payee) has to fabricate
NonPaymentProof.

Why the Honest Party can Win? The honest miners always
work to extend the Bitcoin blockchain from which the honest party
can truncate a segment of block header chain to generate a long
valid NonPaymentProof (in case the payee is honest) or a long
valid PaymentChallenge (in case the payer is honest). Hence, by
extending the Bitcoin blockchain, the honest miners actually help
the honest party to generate what is desirable (i.e., either Non-
PaymentProof or PaymentChallenge). Recall the above PoW-based
arbitration rule, the dishonest party has to defeat the honest min-
ers in the block generation (i.e., mining) race in order to win. In a
nutshell, the reason why the honest party can win the arbitration
is: Because honest miners (with a large portion of hash pow-
er) always help the honest party, the dishonest party (with a
small portion of hash power) is hard to win the Bitcoin block
generating race (i.e., mining race) in the long run. Note that the
miners help the honest party unconsciously and automatically. The
coordination with honest miners is never required. The detailed
security analysis is presented in Section 6.

Handling Transaction Delay. The above design is based on the
fact that the escrowed Bitcoin transaction sets a sufficient transac-
tion fee to ensure that it is mined in the very first block after it is
broadcasted to the Bitcoin network. For a Bitcoin transactions with
a low transaction fee, it may wait for several blocks to be included
in the Bitcoin blockchain, resulting in the transaction delay issue.
Theoretically, there is no transaction delay issue if the transaction
fee is set to be sufficient high because the mining priority of miners
is determined by the transaction fee.

The following method can be used to handle the transaction
delay issue. Consider that the transaction fee is too low and the
escrowed Bitcoin transaction is mined after n” blocks since it is
broadcasted. If BFPayArbitrator receives NonPaymentProof from
the payee, then the payer can send a PaymentChallenge in the same
way. The only difference is that the length of PaymentChallenge
is counted as ny — n’, which means that the first n’ blocks are not
counted in the PoW. As mentioned above, the miners automatically
help the payer to extend the length of PaymentChallenge, so the
payer can still win the arbitration in the long run. In this case,
BFastPay just needs to increase the parameter T, to ensure the
payer to win.

6 SECURITY ANALYSIS

In this section, we first analyze how BFastPay defends the hash-
based double-spending attack and double-payment attack. Then,
we analyze how BFastPay defends some other possible attacks.
Zero-Sum Game. An attack in BFastPay is a zero-sum game be-
tween the payer and the payee. In a double-spending or a double-
payment attack, the gain or loss of one party is exactly balanced
by the loss or gain of the other party. Therefore, the payer and the
payee have a conflict of interests and no collusion attacks are pos-
sible. When one party attempts to launch an attack, the other party
will try to prevent the attack to defend for his/her own interests.
Mathematical Notations. The payer-controlled and the payee-
controlled hash power are represented as «H and SH, respectively,
where H is the global hash power for mining Bitcoin. The remaining
hash power (denoted as yH) is controlled by the honest miners. It
follows that a + f+y = 1.

6.1 Defending Double-spending Attack

In the double-spending attack, the adversary is the payer who has
successfully double spent the Bitcoin and tries to win the payment
arbitration. The payee is the defender, who attempts to win the
arbitration and receive the payment from BFPayArbitrator.

Payer (Adversary). To maximize the probability of winning the ar-
bitration, the payer needs to submit a PaymentChallenge as long as
possible. The canonical Bitcoin blockchain extended by the honest
miners cannot be used to generate a valid PaymentChallenge since
the escrowed Bitcoin transaction is not included. This means that
the payer has to fabricate a valid PaymentChallenge by investing
his/her controlled hash power. Therefore, PaymentChallenge is
generated with hash power aH.

Payee (Defender). To maximize the probability of winning the arbi-
tration, the payee needs to submit a valid NonPaymentProof as long
as possible. Note that the honest miners will extend the canonical
Bitcoin blockchain and a valid NonPaymentProof can be directly
generated from the canonical Bitcoin blockchain. Therefore, the
payee does not need to generate NonPaymentProof by only relying
on his/her controlled hash power. To get a longer NonPaymentProof
at the arbitration time, the payee should invest his/her controlled
hash power to work together with the honest miners to extend
the canonical Bitcoin blockchain. Therefore, NonPaymentProof is
generated with hash power (f+y)H = (1 — a)H.

Attack Success Rate Analysis. The attack success rate is equiv-
alent to the probability that the adversary successfully fabricates
an alternative chain (mined with «H hash power) longer than the
honest Bitcoin blockchain (mined with (f + y)H hash power) in
the competition time period T.. Because a < f§ +y, the probability
decreases exponentially with an increasing T.. We now analyze
the probability that the adversary (with aH hash power) wins the
mining race against the miners (with (1 — &)H hash power) in T
time. The number of blocks expected to be mined by the Bitcoin
miners in a certain time can be modeled as Poisson distribution [33].
Suppose that the honest miners produce one block per 10 mins on
average, the probability of mining exactly k; blocks in T, mins is
given by

_z (1)

Pk, Te) =e Tl (1)

where e = 2.71828 - - - is the base of the natural logarithm. Like-
wise, the probability of mining exactly ks blocks in T, mins for the
adversary is given by

TC k
(10?1—0!)) :

ale
Py (kz, Tc) =¢ W0(-a)
ko!

@)
The double-spending attack occurs if the adversary produces an
alternative blockchain longer than the honest blockchain. Table
3 enumerates all the cases for double-spending attacks and their
probability. By summing up all cases, the probability of double-
spending attack Py can be computed by

+00 +00
Pas= Y [Pk T) Y Palks To)], 3)
k=0 o=k +1

where P;(k1,T;) and Pz(ko, T¢) are defined in Equation (1) and
Equation (2), respectively.

Table 3: Double-spending attacks cases and their probabili-
ties.

Case Case Double-spending
num. description probability
honest miners mine 0 block; +oo
> | P1(0, T Py(ko, T,
0 adversary mines >1 blocks 10.70) Xy 2y Pae, Te)
honest miners mine 1 block; +oo
> | P1(L, T, Py(ko, T,
! adversary mines >2 blocks 1(1Te) Xy 2, Paea, Te)
9 honest miners mine 2 block; P2 T.) ZZ:ia Py (ko To)

adversary mines >3 blocks

Figure 3 plots the probability of double-spending Py, as a func-
tion of T, when a = = 0.1, y = 0.8. It shows that Py is decreas-
ing exponentially with an increasing T.. Accordingly, the double-
spending probability P can be reduced to sufficiently small by
increasing the parameter T; in BFastPay. For example, if T, = 95
mins, then it holds that Py, = 0.096% < 0.1%.

—g— Double-spending probability Pds
—E— Double-payment probability Pdp 1

Success probability
o
o
=Y

60 90 120 150
The competition time period TC (mins)

Figure 3: The success probability of double-
spending/payment as a function of T, (« = f = 0.,
y = 0.8).

6.2 Defending Double-payment Attack

In the double-payment attack, the payee is the adversary who has
successfully received the Bitcoin payment and tries to receive a sec-
ond payment from BFPayArbitrator. The payer is the defender, who
wants to win the arbitration and prevent the payee from receiving
a second payment from BFPayArbitrator. In the double-payment at-
tack, NonPaymentProof is generated with hash power fH and Pay-
mentChallenge is generated with hash power (a +y)H = (1 - f)H.
By the similar analysis as Py, the probability of double-payment
attack Py, is given by

400 +00
Pap= Y [PikiT) . Palha, To)], @
k=0 ko=k;

where P;i(k1,T;) and Pa(ky, T;) are defined in Equation (1) and
Equation (2), respectively. The sole difference in computing pg,
and pg is caused by the arbitration mechanism in dealing with
the tie: if the lengths of NonPaymentProof and PaymentChallenge
equal, then BFPayArbitrator lets the payee win. Figure 3 plots the
probability of double-payment Py, as a function of T;. As expected,
Py is decreasing exponentially with an increasing T;. Thus, the
double-payment probability Py, can be reduced to sufficiently small
by increasing the parameter T,.

6.3 Defending Other Attacks

Fake BFPayReq Attack. In BFastPay, the payer may submit a fake
BFPayReq message to BFPayArbitrator to launch a variety of attacks.
For example, the payer can send BFPayReq with Token_amount = 0
to BFPayArbitrator, where Token_amount specifies the amount
of token that should be paid to the payee if Bitcoin transaction
is not included in the Bitcoin blockchain. This indicates that the
payee will receive no payment if the Bitcoin is double spent by the
payer. To resist the fake BFPayReq message attack, the payee must
check the correctness of BFPayReq message. If BFPayReq message
is correct, the payee can accept the Bitcoin payment and deliver
commodities/services to the payer. Otherwise, the payee rejects the
Bitcoin payment.

Impersonation Attack. An adversary may impersonate either the
payer or the payee to launch attacks. For example, the adversary
can impersonate the payee to raise a dispute by sending a fake
NonPaymentProof to BFPayArbitrator. This impersonation attack
can be defended by the access control provided by BFPayArbitrator.
BFPayArbitrator stores the account addresses of both payer and
payee (see Table 2), so only NonPaymentProof sent from the pay-
ee’s account address and PaymentChallenge sent from the payer’s
account address can be accepted by BFPayArbitrator.

Segment Replay Attack. In a segment replay attack, the adver-
sary may replay a segment of Bitcoin blockchain to generate Non-
PaymentProof or PaymentChallenge. For example, in a payment dis-
pute, the payee may truncate any segment from Bitcoin blockchain
to generate a long NonPaymentProof and try to send it to BFPa-
yArbitrator to win the payment arbitration. This attack cannot
succeed because NonPaymentProof or PaymentChallenge generat-
ed by the above way cannot meet the requirement (R3), so they are
invalid. The party who sends an invalid NonPaymentProof or an
invalid PaymentChallenge will lose the arbitration immediately.

Pre-mining Attack. The adversary with less hash power is hard
to win the arbitration in a long competition time period T¢, but the
adversary may fabricate NonPaymentProof or PaymentChallenge
ahead of time to make them long enough to win the later arbitration.
To defend the pre-mining attacks, BFPayArbitrator requires valid
NonPaymentProof and PaymentChallenge to extend from the latest
Bitcoin block when the Bitcoin transaction occurs (via checking the
requirement (R3)). The latest block hash will be updated whenever a
new Bitcoin block is generated, so the block hash (at the time when
the escrowed Bitcoin transaction occurs) cannot be known by the
adversary in advance. Therefore, the adversary cannot pre-mine
NonPaymentProof or PaymentChallenge to launch the attack.

7 EVALUATION OF COST

BFastPay is a general approach that can be deployed on any PSC-
supported blockchain platform. We instantiate BFastPay on top of
two popular PSC-supported blockchains (i.e., Ethereum and EOSIO)
and then we evaluate their operation cost.

7.1 Implementation

BFastPay Modules. Figure 4 shows the modules in BFastPay pro-
totype. The payer agent consists of the BFPayReqGen module and
the PaymentChallengeGen module. The payee agent contains the
BFPayReqCheck module and the NonPaymentProofGen module.
All of the four modules connect to both the Bitcoin network and
the Ethereum/EOSIO network to listen/access the needed infor-
mation. The four modules work as follows. (1) The BFPayReqGen
module generates the BFPayReq message and sends it to BFPa-
yArbitrator whenever there are requests from the payer. All of the
information in the BFPayReq message is publicly accessible. (2) The
EscrowCheck module can automatically check if BFPayReq sent by
the payer agent is correct or not by comparing it with the ground
truth accessible from the public sources. (3) The NonPaymentProof-
Gen module helps the honest payee to generate NonPaymentProof
from the Bitcoin blockchain. (4) The PaymentChallengeGen module
generates PaymentChallenge by truncating a segment of the block
header chain from Bitcoin blockchain. Some implementation details
are skipped due to the lack of space.

""" Payer agent |} @ T Payee agent ¢
BFPayReqGen network EscrowCheck

H module E module
' Ethereum :

1| PaymentChallengeGen i| NonPaymentProofGen
i module orEOSIO : module
L ' network I

Figure 4: BFastPay modules.

Ethereum and EOSIO-based BFPayArbitrator. Ethereum-based
BFPayArbitrator is implemented by Solidity [16, 17]. The browser-
based compiler and IDE called Remix [13] is applied to develop
BFPayArbitrator. We use the Ethereum test network Rinkeby [14]
to test BFPayArbitrator. EOSIO-based BFPayArbitrator is developed
by EOSIO C++ in the EOS Contract Development Toolkit (CDT)
1.3.1 [6].

Table 4: Cost for different operations in Ethereum-based BFastPay.

X X Ethereum tx Ethereum tx Ethereum tx Ethereum tx Ethereum tx
Operations Pre-operations 1 9 .
(BFPayReq) | (NonPaymentProof) | (PaymentChallenge’) | (PaymentChallenge®) | (send deposit)
Cost (gas) 2.46 X 10° 2.78 X 10° 1.04 x 10° 1.32 x 10° 8.08 x 10% 6.60 x 104
Cost fee in ETH 4.9%1073 5.56 x 1074 2.08 x 1074 2.54x 1074 1.62x 107* 1.32x 1074
Cost in $ (300$/ETH) $1.47 $0.167 $0.0624 $0.0762 $0.0486 $0.0396

1: PaymentChallenge contains both the Merkle proof and the block header proof. 2: PaymentChallenge contains only the Merkle proof.

Table 5: EOS token needed to stake for different operations in EOSIO-based BFastPay.

) . EOSIO tx EOSIO tx EOSIO tx EOSIO tx EOSIO tx
Operations | Pre-operations 1 9 .
(BFPayReq) | (NonPaymentProof) | (PaymentChallenge') | (PaymentChallenge?) | (send deposit)
EOS needed | 3.6 [o5] 11 | 16 | 0.8 | 0.1

1: PaymentChallenge contains both the Merkle proof and the block header proof. 2: PaymentChallenge contains only the Merkle proof.

7.2 Evaluation

In this section, the experiment settings are first introduced. Then,
we evaluate the operation cost of Ethereum-based BFastPay and
EOSIO-based BFastPay.
Experiment Settings. In the experiments, the competition time T
is set to be 95 mins (i.e., the security deposit will be frozen for 95 min-
s and then be free again). If T, = 95 mins, then Py = 0.096% < 0.1%
according to Equation (3). That is, the double-spending probabil-
ity in BFastPay is less than 0.1% in the presence of an adversary
with 10% of the global hash power, Therefore, BFastPay achieves a
comparable security level as the 6-confirmation-waiting approach
against the double-spending attacks?.
Ethereum-based BFastPay Evaluation. The Ethereum smart
contract supported functions have “gas" cost depending on how
many computational steps and storage space it requires. The cost
is computed as (costed gas)Xx(gas price). In the experiments, the
gas price is set to be 2 gwei, where 1 gwei= 10~ ETH. The cost
of Ethereum-based BFastPay may come from five parts: (1) Pre-
operations (including deploy contract operation and add security
deposit operation), (2) Ethereum tx (send BFPayReq), (3) Ethereum
tx (send NonPaymentProof), (4) Ethereum tx (send PaymentChal-
lenge), and (5)Ethereum tx (transfer security deposit to the payee).
Table 4 summarizes the average cost for each part. The fee for
pre-operations is a one-time cost, so we do not consider them in
calculating the operation cost per fast Bitcoin transaction. There
are many use cases of BFastPay, resulting in different operation
costs. We consider the two most common use cases to evaluate the
operation cost of BFastPay for a Bitcoin transaction.

e Case 1 (no dispute arises): In this case, the cost only comes
from Ethereum tx (send BFPayReq). The operation cost per
Bitcoin transaction is 5.56 x 10~% ETH (or $0.167, 300 $/ETH*).

o Case 2 (dispute arises): In this case, we consider the payee sends
out NonPaymentProof and the payer sends out PaymentChal-
lenge. If the payer wins, the cost comes from (1) Ethereum tx
(send BFPayReq), (2) Ethereum tx (send NonPaymentProof),

3Note that the double-spending probability in the 6-confirmation-waiting ap-
proach is also less than 0.1% in the presence of an adversary with 10% of the global
hash power [28].

4The price is from Sep. 2020.

and (3) Ethereum tx (send PaymentChallenge). The total opera-
tion cost per Bitcoin transaction is 1.02 x 1073 ETH (or $0.306,
300 $/ETH). If the payee wins, the cost additionally includes
(4) Ethereum tx (transfer security deposit). The total operation
cost per Bitcoin transaction is 1.12 X 10~ ETH (or $0.336, 300
$/ETH).

In practice, case 1 (no dispute arises) is more frequent than case
2 (dispute arises) because there are no attacks in the vast majority
of real-world Bitcoin payments. In summary, the operation cost of
Ethereum-based BFastPay is low.
EOSIO-based BFastPay Evaluation. The EOSIO blockchain al-
locates blockchain resources based on the amount of EOS token
staked. We set the use frequency of BFastPay service to be up to 10
times per day. Table 5 summarizes the EOS token needed to stake
for different operations. It shows that the user needs to stake at
most 7.7 EOS (or $38.5, 5$/EOS) to use 10 times of BFastPay service
per day no matter whether there is a dispute or not during the
BFastPay service life cycle. Because the deployer can revoke the
smart contract to reclaim the staked EOS token later, we treat the
EOSIO-based BFastPay service to be free of charge.

8 COMPARISON

We compare Ethereum-based BFastPay and EOSIO-based BFastPay
with the classic escrow-based solution: Lightning Network [31].
Lightning Network is representative because most escrow-based
solutions exploit a similar mechanism with Lightning Network.
Lightning Network provides users with fast payment services by
establishing some off-chain payment channels. Specifically, two
parties (e.g., a payer and a payee) first open a secure payment
channel by depositing some Bitcoin to a 2-of-2 multi-signature
Bitcoin address. The parties interact directly to make payments by
adjusting the respective ownership shares of the deposited fund. In
cases where no direct payment channel exists between two parties,
parties have to rely on intermediate peers to route transactions.
The comparison results between BFastPay and Lightning Network
are summarized in Table 6. In the table, Lightning Network is called
intra-blockchain escrow approach because the security deposit is
escrowed on the Bitcoin blockchain itself.

Remarks. We have three remarks about Table 6.

Table 6: The comparison between the intra-blockchain escrow approach (Lightning Network) and the inter-blockchain escrow

approach (BFastPay) (@: yes, ©: partial, O: no).

Approaches Intra-blockchain escrow Inter-blockchain escrow
Protocols Lightning Network Ethereum-based BFastPay | EOSIO-based BFastPay
Required waiting time <1 second ~ 3 mins <1 second
Extra operation cost <$0.01/tx < $0.34/tx $0/tx
Time required for. . 60 mins 95 mins 95 mins
refuel/reuse security deposit

Decentralization is preserved? () () [))
Mainly using Bitcoin? o (] o

No requirements on

the payment channel? o g 1
Routing-free? O () []
Not only support micropayments? O [] [}

(1) Both Lightning Network and EOSIO-based BFastPay reduce de-
centralization. Because Lightning Network introduces payment
hubs [9] and EOSIO is a permissioned blockchain in which the
miners need permission to join [5].

(2) Both Lightning Network and EOSIO-based BFastPay can reduce

waiting time to be less than 1 second. The key reason is that both

of them trade decentralization for fast transaction validation.

Lightning Network directly uses the security deposit for fast

transactions. If the security deposit is insufficient, the payer

needs to trigger a Bitcoin transaction to refuel the security de-
posit, which takes 60 mins on average. In contrast, BFastPay
does not directly use the security deposit for fast transactions.

If there are no attacks, the security deposit will be free auto-

matically after 95 mins”.

3

=

(a) Lightning Network

(b) BFastPay

Figure 5: (a) In Lightning Network, the escrowed fund is as-
sociated with a payment channel. The maximum allowed
transaction amount between A and D does not exceed
min{20, 10,5} = $5. (b) In BFastPay, the escrowed fund is as-
sociated with a party. The maximum allowed transaction
amount between A and any party is $20.

Advantages. Compared with Lightning Network, BFastPay has

several advantages.

(1) BFastPay has no requirements on the payment channel.
In contrast, Lightning Network has requirements on the pay-
ment channel. It requires establishing a payment channel or
a routing path between the payer and the payee before using
it. Figure 5a shows an example. Because there are no payment

5The choice of 95 mins is explained in Section 7.2.

routing paths between A and E, the Lightning Network service
is unavailable between them.

BFastPay is routing-free. In contrast, Lightning Network re-
quires cooperative intermediate peers to help to route transac-
tions. Figure 5 shows an example. In Lightning Network, the
escrowed fund is associated with a payment channel between
two parties, so a payer can only use the escrowed fund for fast
payment for only one payee (paying for other payees should
rely on routing). However, in BFastPay, the escrowed fund is
associated with the payer. The payer can use it to pay for any
party without routing.

BFastPay does not only support micropayments. Light-
ning Network only supports micropayments, whereas BFast-
Pay can support any payment with an amount less than the
escrowed fund. Figure 5 shows an example. Suppose that there
are three established payment channels: (1) between the par-
ty A and the party B ($20 escrowed), (2) between the party
B and the party C ($10 escrowed), and (3) between the par-
ty C and the party D ($5 escrowed). If the party A wants to
send a fast Bitcoin payment to the party D via the routing path
A—B—C—D, then the maximum allowed amount does not
exceed min{10, 20, 5} = $5. Generally speaking, the longer the
path, the smaller the transaction amount allowed. Thus, Light-
ning Network suffers from a high probability of routing failure.
A recent study [8, 27] shows that anyone who uses Lightning
Network to transfer Bitcoin over $5.5 has 50% chance of
routing failure.

@

~

3

~

Disadvantages. There are several disadvantages of BFastPay over
Lightning Network. First, BFastPay requires payers to exchange
other tokens (e.g., ETH, EOS) to be the security deposit. Moreover,
BFastPay requires the payer agent and the payee agent to have
access to the Internet for a short period of time (i.e., during the
arbitration time window). Last, BFastPay requires a slightly longer
time to reuse/refuel the security deposit.

Discussions. We discuss two issues below. (1) Why not directly
use other tokens? Because Bitcoin has dominated in practical
usage [1], our goal is to develop a solution to support fast Bitcoin
payment while keeping Bitcoin as the major payment currency. Note
that in the vast majority of cases (both parties are honest and never
launch attacks), the payer can enjoy a one-time deposit and permanent
BFastPay fast payment services. Thus, BFastPay is different from

the solution that requires users to exchange Bitcoin to other tokens
every time before using the fast payment. (2) How to mitigate the
online requirement issue? After the payment, the payer agent
and payee agent can also delegate the arbitration operations to an
always-online cloud server. This solution can mitigate the online
requirement issue.

Summary. BFastPay and Lightning Network are competing ap-
proaches. Each approach has its appropriate application scenarios.
For instance, Lightning Network is more suitable for micropay-
ments, while BFastPay is more suitable for relatively large pay-
ments.

9 RELATED WORK

We omit the related work on solutions [21, 22, 24, 30, 31, 35] that
support fast Bitcoin payment since they have been covered in the
introduction section. In this section, we review two projects that
work on inter/cross-blockchain transaction validation: BTC Relay
project [2] and Summa project [19]. (1) BTC Relay project lets re-
layers relay Bitcoin blockchain headers to the Ethereum blockchain.
The Bitcoin blockchain headers can be used by Ethereum smart
contracts to validate Bitcoin transactions based on simple payment
verification (SPV) [28] method. BTC Relay has two limitations. First,
because of the lack of relayers, BTC Relay only works intermit-
tently and hence it is not reliable. Second, it is very expensive to
store the entire Bitcoin blockchain headers in Ethereum blockchain.
Compared with BTC relay, BFastPay is a much more reliable and
low-cost solution. (2) The Summa solution validates a Bitcoin trans-
action in an Ethereum smart contract only checking the total PoW
carried by a proof. However, this solution is not sufficiently secure
because an adversary with a small portion of hash power can fab-
ricate a long enough block header chain by extending the mining
time. In contrast, based on the novel PoW-based arbitration mecha-
nism, BFastPay can support a much higher level of confidence for
inter/cross-blockchain Bitcoin transaction validation.

10 CONCLUSION

We propose BFastPay, the first inter-blockchain and routing-free
protocol, to support fast payment in Bitcoin network. BFastPay can
be built based on any PSC-supported blockchain, therefore, any
further improvement on the transaction validation mechanism of
the PSC-supported blockchains can directly lead to the improve-
ment of BFastPay. Moreover, we develop a PoW-based arbitration
mechanism to enable BFastPay to make fair payment arbitration
in a payment dispute. Our comparative study shows that BFastPay
and Lightning Network are competing approaches. We hope that
our study can stimulate more future research endeavors on this
crucial problem in blockchain.

11 ACKNOWLEDGMENT

This work is supported in part by the National Science Foundation
under Grants No. CNS-1815636 and CNS-1814551. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors only and do not necessarily reflect
those of the National Science Foundation.

REFERENCES

[22

[23

S
=)

[25

[26]

(31]

(32]

[33

[34

Bitcoin dominance. https://coinmarketcap.com/charts/#dominance-percentage.
Btc relay. http://btcrelay.org/.

Coinmarketcap. https://coinmarketcap.com/.

Confirmation. https://en.bitcoin.it/wiki/Confirmation.

Eos.io white paper. https://github.com/EOSIO/Documentation/blob/master/
TechnicalWhitePaper.md.

Eosio.cdt (contract development toolkit) is a suite of tools used to build eosio
contracts. https://github.com/EOSIO/eosio.cdt.

Ethereum white paper. https://github.com/ethereum/wiki/wiki/White-Paper.
Lightning strikes, but select hubs dominate network funds. https://diar.co/
volume-2-issue-25/.

Mathematical proof that the lightning network cannot be a decentralized bitcoin
scaling solution. https://bit.ly/2tg3sxe.

Microsoft adds bitcoin payments for xbox games and mobile content. https:
//bit.ly/1vIvjLP.

Neo white paper. http://docs.neo.org/en-us/whitepaper.html.

On slow and fast block times. https://blog.ethereum.org/2015/09/14/on-slow-
and-fast-block-times/.

Remix. https://github.com/ethereum/remix.

Rinkeby. https://rinkeby.etherscan.io/.

Samsung stores in three baltic states accept cryptocurrencies. https://bit.ly/
2LAPFHz.

The solidity contract-oriented programming language.
ethereum/solidity.

Solidity documentation. https://solidity.readthedocs.io/en/v0.4.24/.

The stellar consensus protocol: A federated model for internet-level consensus.
https://www.stellar.org/papers/stellar- consensus-protocol.pdf.

summa project. https://medium.com/summa-technology/cross-chain-auction-
technical-f16710bfe69f.

BAMERT, T., DECKER, C., ELSEN, L., WATTENHOFER, R., AND WELTEN, S. Have
a snack, pay with bitcoins. In IEEE International Conference on Peer-to-Peer
Computing (P2P) (2013), pp. 1-5.

DECKER, C., AND WATTENHOFER, R. A fast and scalable payment network with
bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing Systems
(SSS) (2015), pp. 3-18.

DMITRIENKO, A., NoACK, D., AND YUNG, M. Secure wallet-assisted offline bit-
coin payments with double-spender revocation. In ACM on Asia Conference on
Computer and Communications Security (AsiaCCS) (2017), pp. 520-531.
GOLDFEDER, S., BONNEAU, J., GENNARO, R., AND NARAYANAN, A. Escrow protocols
for cryptocurrencies: How to buy physical goods using bitcoin. In International
Conference on Financial Cryptography and Data Security (2017), Springer, pp. 321~
339.

KARAME, G. O., ANDROULAKI, E., AND CAPKUN, S. Double-spending fast payments
in bitcoin. In ACM conference on Computer and communications security (CCS)
(2012), pp. 906-917.

Kiavias, A., RUSSELL, A., DAvID, B., AND OLIYNYKOV, R. Ouroboros: A provably
secure proof-of-stake blockchain protocol. In Annual International Cryptology
Conference (CRYPTO) (2017).

MavRroupis, V., WUsT, K., DHAR, A., KOSTIAINEN, K., AND CAPKUN, S. Snappy:
Fast on-chain payments with practical collaterals. In Network and Distributed
System Security Symposium (NDSS) (2020).

MERCAN, S., ERDIN, E., AND AKKAYA, K. Improving transaction success rate via
smart gateway selection in cryptocurrency payment channel networks. arXiv
preprint arXiv:2003.10877 (2020).

NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system.

PANWAR, G., MISRA, S., AND VISHWANATHAN, R. Blanc: Blockchain-based anony-
mous and decentralized credit networks. In ACM Conference on Data and Appli-
cation Security and Privacy (CODASPY) (2019), pp. 339-350.

PEREZ-SOLA, C., DELGADO-SEGURA, S., NAVARRO-ARRIBAS, G., AND HERRERA-
JoancoMARTi, J. Double-spending prevention for bitcoin zero-confirmation
transactions. IACR Cryptology ePrint Archive (2017).

PooN, J., AND Dryja, T. The bitcoin lightning network: Scalable off-chain instant
payments. https:/lightning. network/lightning-network-paper.pdf (2016).

Roos, S., MORENO-SANCHEZ, P., KATE, A., AND GOLDBERG, L. Settling payments
fast and private: Efficient decentralized routing for path-based transactions. In
Network and Distributed System Security Symposium (NDSS) (2017).

ROSENFELD, M. Analysis of hashrate-based double spending. arXiv preprint
arXiv:1402.2009 (2014).

SIVARAMAN, V. High-efficiency cryptocurrency routing in payment channel net-
works. PhD thesis, MIT, 2019.

TAKAHASHI, AND OTSUKA, A. Secure offline payments in bitcoin. In International
Conference on Financial Cryptography and Data Security (FC) (2019).

https://github.com/

https://coinmarketcap.com/charts/#dominance-percentage
http://btcrelay.org/
https://coinmarketcap.com/
https://en.bitcoin.it/wiki/Confirmation
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/eosio.cdt
https://github.com/ethereum/wiki/wiki/White-Paper
https://diar.co/volume-2-issue-25/
https://diar.co/volume-2-issue-25/
https://bit.ly/2tg3sxe
https://bit.ly/1vIvjLP
https://bit.ly/1vIvjLP
http://docs.neo.org/en-us/whitepaper.html
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://github.com/ethereum/remix
https://rinkeby.etherscan.io/
https://bit.ly/2LAPFHz
https://bit.ly/2LAPFHz
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://solidity.readthedocs.io/en/v0.4.24/
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://medium.com/summa-technology/cross-chain-auction-technical-f16710bfe69f
https://medium.com/summa-technology/cross-chain-auction-technical-f16710bfe69f

	Abstract
	1 Introduction
	2 Preliminaries
	3 Threat Model and Assumptions
	4 BFastPay Overview
	4.1 BFastPay Flowchart
	4.2 Security Deposit Clarification

	5 BFastPay Arbitration
	5.1 NonPaymentProof Design and Validation
	5.2 PaymentChallenge Design and Validation
	5.3 PoW-based Arbitration Mechanism

	6 Security Analysis
	6.1 Defending Double-spending Attack
	6.2 Defending Double-payment Attack
	6.3 Defending Other Attacks

	7 Evaluation of Cost
	7.1 Implementation
	7.2 Evaluation

	8 Comparison
	9 Related Work
	10 Conclusion
	11 Acknowledgment
	References

