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How Can IoT Services Pose New Security
Threats In Operational Cellular Networks?

Tian Xie, Guan-Hua Tu, Chi-Yu Li, Chunyi Peng

Abstract—Carriers are rolling out Internet of Things (IoT) services including various IoT devices and use scenarios. Compared with
conventional non-IoT devices such as smartphones and tablets, IoT devices have limited network capabilities (e.g., low rates) and
specific use scenarios (e.g., inside vehicles only). These specialized use scenarios lead to carries often offering cheaper device access
fees for IoT devices. However, the aforementioned disparity of service charging between IoT and non-IoT devices may lead to security
issues. In this work, we conduct the first empirical security study on cellular IoT service charging over two major US carriers and make
three major contributions. First, we discover four security vulnerabilities and analyze their root causes, which help us identify two
significant security threats, IoT masquerading and IoT use scenario abuse. Second, we devise three proof-of-concept attacks and
assess their real-world impact. We determine that they can be exploited to allow adversaries to pay 43.75%-80.00% less for cellular
data services. Third, we analyze the challenges in addressing these vulnerabilities and develop an anti-abuse solution to mitigate
attack incentives. The solution is standard-compliant and can be used immediately in practice. Our prototype and evaluation confirm its
effectiveness.

Index Terms—Cellular network, IoT, security, and charging.
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1 INTRODUCTION

The Internet of Things (IoT) is becoming more and more per-
vasive. Through well-connected things, such as wearables,
vehicles, robots, and smart meters, the IoT improves the
ways we interact with and control cyber-physical systems
and empowers smart IoT applications in a multitude of
vertical markets, including climate and environment con-
trol, agriculture, healthcare, smart cities, smart home, in-
dustry, etc. To interconnect various IoT devices, the cellular
network, which is the only large-scale wireless network
infrastructure on a par with the Internet, plays a critical
role. Compared with other emerging non-cellular wireless
IoT solutions like LoRa (Long Range) and other LPWA (Low
Power Wide Area) technologies [1], the cellular network is
ready to roll out ubiquitous IoT services to the massive IoT
market. The cellular IoT market is forecasted to reach 15
billion devices in 2021, representing a staggering four-fold
increase from 4 billion devices in 2015 [2].

However, to the best of our knowledge, cellular IoT secu-
rity has not been fully explored by academia and industry.
When faced with cellular IoT rollout, one of the key issues
is to secure its service charging. Many studies [3]–[7] have
shown that cellular service charging security is critical for
operators due to its negative impacts of an insecure system
on both their profits and their user’s rights. IoT devices have
different traffic patterns and limited use scenarios compared
to conventional cellular devices. The differences include
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much lower data rates, smaller traffic volumes, and lim-
ited use scenarios (e.g., inside vehicles only, small screens).
Carriers usually provide IoT users with cheaper and more
competitive data plans. In the Verizon and AT&T networks,
the device access fee of an IoT device is much cheaper than
that of a smartphone. For example, a user pays $10 for an
IoT device and $20 for a smartphone in AT&T’s limited data
plans. In practice, users can receive IoT and non-IoT SIM
cards for their IoT (e.g., smartwatches) and non-IoT devices
(e.g., smartphones). One natural question arises: will the new
IoT service charging expose the current cellular network ecosystem
to emerging attack vectors?

Unfortunately, the answer to the above question is yes.
We have identified four security vulnerabilities from two
major US carriers, denoted as OP-I and OP-II for privacy
concerns. First, an IoT SIM card can be used for a non-IoT
device (V1). Second, the network infrastructure is unable
to correctly identify IoT and non-IoT devices (V2). Third,
the infrastructure does not impose any restrictions on IoT
data services (V3). Fourth, the infrastructure is unable to
confine IoT devices to their pre-defined use scenarios (V4).
These vulnerabilities result in two major security threats:
(1) adversaries can disguise non-IoT devices as IoT devices
to pay less without service downgrades; (2) adversaries
can use IoT devices in unanticipated use scenarios. Each
of the vulnerabilities can be attributed to design defects of
the cellular IoT standards, operational slips of the network
infrastructure, and/or device implementation issues. Table 1
summarizes these vulnerabilities.

We exploit these vulnerabilities to devise three proof-of-
concept attacks: IoT masquerading, wearable IoT abuse, and
car-connected IoT abuse. The IoT masquerading allows the
adversary to gain cheaper smartphone services by disguis-
ing a smartphone as an IoT device. The other two attacks
abuse IoT devices in unanticipated use scenarios to gain
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Category Vulnerability Type Root Cause

Device
V1: an IoT SIM card can be used for a non-
IoT device.

Design Defect No mutual authentication between the SIM card and the device
is stipulated in cellular IoT standards (Section 4.1.1).

Infrastructure

V2: the infrastructure is unable to correctly
identify IoT and non-IoT devices. Design Defect No device authentication mechanism is stipulated in cellular IoT

standards. (Section 4.1.1).

V3: the infrastructure does not impose any
restrictions on IoT data services.

Operational Slip
Operators merely rely on the hardware constraints of IoT de-
vices instead of imposing restrictions from the infrastructure
(Section 4.1.2).

V4: the infrastructure is unable to confine
IoT devices to their pre-defined use scenar-
ios.

Operational Slip/ Operators restrict the IoT use scenarios by device-based security
mechanisms and constraints. However, they are not bullet-proof.
(Section 4.2).

Implementation Issue

TABLE 1: Summary of security vulnerabilities and root causes.

cheaper mobile hotspot services. Our study shows that the
adversary can pay 43.75% to 80.00% less for cellular services
while using two top-tier US carriers.

At first glance, carriers can address the vulnerabilities
by binding IoT services to IoT SIM cards and limiting their
maximum rates based on the profiling of their normal use
scenarios. Even though the adversary can disguise a smart-
phone as an IoT device using an IoT SIM card, its maximum
rate is limited by the IoT service associated with the SIM
card. This can prevent the adversary from gaining cheaper
services. However, this solution is not practical. With the
expected proliferation of cellular IoT devices in the near
future, there are more and more unprecedented IoT devices
and use scenarios. It is not only challenging but also non-
scalable for carriers to determine appropriate maximum
rates for various IoT services/devices (e.g., car-connected
mobile hotspots and critical traffic control devices). We thus
propose a service-oriented charging solution, anti-abuse
service model, which provides differential service quality
for each cellular device based on its cellular technology
category and device access fee. With only minimal support
from the infrastructure, it is compatible with current cellular
network standards and practices. Our model can eliminate
the adversary’s incentives to launch the IoT masquerading
and abuse attacks.

Contributions: This paper makes three key contributions.
• We conduct the first empirical security study on cellular

IoT charging over three mainstream cellular IoT tech-
nologies, including CAT-4 (Category 4), CAT-1 (Category
1), and CAT-M1 (Category M1) [8]–[10], which provide
users with different transmission rates and battery life for
the support of critical and massive IoT applications (see
details in Table 2). We then identify four vulnerabilities
and analyze root causes.

• We devise three proof-of-concept attacks by exploiting
the identified vulnerabilities and assess their real-world
impact on two major US carriers.

• We examine why the solution can be challenging for car-
riers; then, we propose a standard-compliant solution, as
well as prototype and evaluate it. The lessons learned can
secure and facilitate the global deployment of cellular IoT
services, as well as provide new insights for upcoming 5G
networks.

Paper Organization: The rest of this paper is structured as
follows. §2 introduces the background of the cellular IoT
service charging. We analyze its security in §3, as well as
uncover vulnerabilities, and devise three proof-of-concept

CAT-4 (R8) CAT-1 (R8) CAT-M1 (R13) NB-IoT (R13)

KPI

IoT types Critical Critical/Massive Massive Massive
DL peak rate 150 Mbps 10 Mbps 1 Mbps 0.2 Mbps
UL peak rate 50 Mbps 5 Mbps 1 Mbps 0.2 Mbps
bandwidth 20 Mhz 20 Mhz 1.4 MHz 180 KHz
battery life day(s) year(s) >10 years >10 years

Roll- Consumer IoT   G# (Few) G# (Few)
out product carrier   G# (Partial) G# (Partial)

TABLE 2: Summary of cellular IoT technologies in opera-
tional LTE networks from US carriers [8]–[11].

Control-plane signaling path Data-plane data path
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Fig. 1: 4G LTE network architecture with IoT support.

attacks in §4. §5 models and showcases attack incentives. We
present challenges of securing cellular IoT service charging
in §6 and propose a solution in §7. §8, §9, and §10 present
discussion, related work, and conclusion, respectively.

2 HOW TO CHARGE FOR CELLULAR IOT SER-
VICES?
Cellular IoT technologies. Cellular IoT is a newly emerging
solution for IoT devices connected over cellular networks.
They share network infrastructure with non-IoT devices
(e.g., smartphones), but require special support, such as
long sleep time and the delivery of small data over the
control plane. Several technologies have been proposed to
meet their diverse demands: CAT-4, CAT-1, CAT-M1, and
NB-IoT (Narrowband IoT) [8]–[10], which are summarized
in Table 2. These cellular IoT technologies support two
major types of IoT applications: critical (e.g., traffic/safety
control and mobile health) and massive (e.g., smart agricul-
ture) applications. The critical IoT applications require ultra
reliability, low latency, and high availability, whereas the
massive IoT applications focus on low cost, low energy, and
small data volumes. In the market, CAT-4 and CAT-1 have
been widely deployed by US carriers, but other technologies
have not (e.g., Verizon and AT&T support only CAT-M1
whereas T-Mobile supports only NB-IoT). Most consumer
IoT devices, such as wearable devices, car-connected mobile
hotspots, and tracking sensors, belong to CAT-4, CAT-1, and
CAT-M1.

Figure 1 shows the 4G LTE network architecture with
IoT support. The network architecture consists of two ma-
jor components: Radio Access Network (RAN) and core
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Carriers Data plan Monthly
Charge fees

Non-IoT devices IoT devices

Smartphone Portable
Mobile Hotspot

CAT-4
CAT-1/CAT-M1Wearable Car-connected

Mobile Hotspot

OP-I
Limited data plan Device access fee $20 $20 $10 $10 $0

Service access fee $50 (3GB) $0* $0* $0* $0.99(0.5MB),$14(0.1GB),$22(1GB),$35(5GB)

Unlimited data plan Device access fee $35 No unlimited data plans $10 $20 No unlimited data plansService access fee $75 $0* $0*

OP-II
Limited data plan Device access fee $20 $10 $5, $10 (varying with models) $10 $0

Service access fee $35 (2GB) $0* $0* $0* $2(0.2MB),$18(0.15GB),$25(1GB),$50(5GB)

Unlimited data plan Device access fee $0(1),$65(2),$75(3),$85(4) $20 $5, $10 (varying with models) $20 No unlimited data plansService access fee $75 $0* $0* $0*

TABLE 3: Data plans for IoT and non-IoT devices in two US carriers (studied in Dec. 2018). The price and volume cap are
shown by per month unless explicitly specified. Many variants may not be included, for example, $60 for 10GB per 30 days
for OP-I IoT sim cards [12]. ($0*: Shared the fee with phones)

network. The RAN allows IoT devices to transmit IoT
data to cellular network infrastructure using the aforemen-
tioned cellular IoT technologies. The core network includes
three main network elements: Mobility Management Enti-
ties (MMEs), 4G gateways, and the Home Subscriber Server
(HSS). The MMEs are responsible for user mobility, user
authentication, and resource reservation. Additionally, the
MMEs are responsible for new IoT functions [13], such
as power saving mode and extended discontinuous re-
ception [14]. The HSS stores user subscription data and
user information profiles. The 4G gateways forward data
between the RAN and the Internet, as well as collect device
data usage.
Cellular IoT service charge. We investigate the service
charges of IoT devices from two top-tier US carriers denoted
as OP-I and OP-II and compare them with those of non-IoT
service charges. Table 3 summarizes the comparison. The
SIM card used for each device is associated with the owner’s
non-IoT or IoT data plan. For both device types, a device’s
charge includes two kinds of fees, device and service access
fees. Its bill can be formulated as B(u) = α + u ⊗ β,
where α is the device access fee and u ⊗ β represents the
service access fee determined by actual data usage volume
u and unit price β. In most cases, unlimited voice and text
services are offered, so the formula does not include them.
The service charges vary not only with device types and
models but also with limited and unlimited data plans.

The unlimited data plans often have higher device access
fees than those of the limited data plans. For instance, the
device access fees are $20 and $35 for a smartphone line in
OP-I’s limited and unlimited plans, respectively. The lim-
ited plans usually have service access fees increasing with
capped data usage volumes, in contrast to fixed service fees
in the unlimited data plans. For example, OP-II charges $35,
$50 and $70 for monthly volumes of 2 GB, 4 GB, and 8 GB,
respectively. Note that the increase is not proportional for
most carriers except Google Project Fi [15], which charges
$15 for each 1 GB, is one of few exceptions.

In terms of the service charging policies, IoT devices
differ from non-IoT devices in two aspects. First, IoT device
access fees are cheaper, since IoT devices require much
smaller data usage volumes than non-IoT devices. The IoT
device access fees may also vary with device models. For
example, OP-II charges $5 for an LG Watch Urbane2 and
$10 for an Apple Watch. Second, IoT service access fees
are usually tied to non-IoT data plans, but there are still
some IoT-specific data plans. The IoT-specific data plans
offer lower service fees per data unit. For example, OP-I
offers 5 GB [12] to IoT users at only $35, but offers the same

amount of data to smartphone users at $50.

3 WHAT MAY GO WRONG?
We aim to explore the dark side of the emerging IoT service
charging scheme and its technical support from a security
perspective. Any of its vulnerabilities may cause cellular
users and/or carriers to suffer monetary losses. We start
from an observation that IoT devices have cheaper data
plans than non-IoT devices, which can be attributed to
their distinct use scenarios. For example, smartwatches are
designed for simple voice/data services, and car-connected
hotspots are used only inside vehicles. It appears to be
reasonable, but one question arises: are the underlying tech-
nologies sufficient to secure this differential charge? We answer
it by starting with the following questions.

Q1. Given different charges for the same data service of
an IoT device and a smartphone, can the smartphone
masquerade as the IoT device to pay less?

Q2. If yes, can the smartphone retain its data service quality
(e.g., no speed downgrade)?

Q3. Can adversaries abuse IoT devices in unanticipated use
scenarios so as to take advantage of operators?

Unfortunately, we disclose that the IoT charging, as well
as the technical support behind it, is not bullet-proof. The
answers to the above three questions are all yes. Specifically,
we uncover four vulnerabilities from design, implementa-
tion, and network operation aspects. The cellular network
standards, network operators/vendors, and device manu-
facturers all share the blame for these vulnerabilities. The
fundamental problems are rooted not in how to charge IoT
and non-IoT devices, but in how to provision and safeguard
IoT services.
Threat model. In this work, the adversary is a mobile
user who uses only commodity devices: smartphones and
IoT devices available on the market. To launch attacks, (s)he
needs to either know how to install tools on smartphones
and modify their settings, or rely on some one-click soft-
ware/hardware package, the development of which is not
our main focus. In all cases, (s)he has no access to the
cellular network infrastructure or other devices. Moreover,
the network infrastructure and the device hardware are
not compromised. Given this model, the identified security
loopholes can be translated into realistic attacks against
carriers.
Methodology. We validate vulnerabilities and attacks in
two top-tier US carriers, OP-I and OP-II. They, together, take
more than 65% of market share [16] in the U.S. We con-
duct experiments using IoT devices including two popular
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smartwatch models and two car-connected hotspots, as well
as non-IoT devices including four Android phone models,
with the two carriers’ SIM cards. The two smartwatch
models are LG Watch Urbane 2nd edition with Android
6.1.1 and Samsung Gear S3 frontier with Tizen OS 2.3.2. The
four phone models include Samsung Galaxy S5/S6, LG G3
and Google Nexus 6P, which run Android 4.4.4, 5.0.2/6.0.1,
4.4.2 and 7.1.1, respectively. Note that all the results can be
applied to both carriers, unless explicitly stated otherwise.
Responsible experiments. We understand that some fea-
sibility tests and attack evaluations might be harmful to car-
riers, so we proceed with this study in a responsible manner.
We run experiments in fully controlled environments. We
purchase plans with sufficient data/voice/text quotas, so
the carriers do not get hurt. We seek to disclose new security
vulnerabilities and effective attacks on cellular IoT services,
but not to aggravate the damages caused by them.

4 HOW DOES CELLULAR IOT CHARGING GO
WRONG?
In this section, we answer the three aforementioned ques-
tions by considering two potential threats, IoT masquerad-
ing and IoT use scenario abuse. We validate vulnerabilities
and devise proof-of-concept attacks for each threat, as well
as evaluate a long-term IoT attack to show real-world im-
pact.

4.1 IoT Masquerading
We first introduce three vulnerabilities and then devise an
IoT masquerading attack.

4.1.1 Can Non-IoT Devices Masquerade as IoT Ones?
The answer is yes, due to two vulnerabilities discovered
within the 3GPP security design. Each of vulnerabilities
corresponds to a lack of mutual authentication between
two parties. One is between IoT SIM cards and mobile
devices, so an IoT SIM card can be used for a non-IoT
device (V1). The other is between mobile devices and the
infrastructure, so the latter is unable to correctly identify IoT
and non-IoT devices (V2). These two vulnerabilities allow
non-IoT devices to masquerade as IoT devices without being
detected by SIM cards or the infrastructure.

The cellular authentication solely relies on the Authen-
tication and Key Agreement (AKA) procedure [13], where
users and the infrastructure are mutually authenticated.
Each user is identified by his/her International Mobile
Subscriber Identity (IMSI) and authenticated based on a
secret key. Both the IMSI and the secret key are stored
in the SIM card. However, neither the SIM card nor the
infrastructure authenticates the used device; the former does
not differentiate types of mobile devices in its operation,
whereas the latter identifies a connected device purely based
on its reported information, which may be fake without the
device authentication and thus lead to wrong identification.
By current design, the non-IoT/IoT data plan to which each
user subscribes is bound to the IMSI or the SIM card, so
the used device is not restricted by the subscribed plan.
That is, an IoT SIM card, which is associated with an IoT
data plan, can also work on non-IoT devices. This allows

IMEI of LG Watch Urbane 2nd 

(a) Replacing the smartphone’s IMEI with an IoT device’s
using the EFS tool [17].

(b) Confirming an IoT device’s IMEI on the smartphone.

(c) A snapshot of the OP-II’s web page shows that the
smartphone is recognized as an IoT device, a smartwatch.

Fig. 2: Making IMEI spoofing on a smartphone (LG G3) to
masquerade as an IoT device (LG Watch Urbane 2nd).

the IoT masquerade to be possible. Moreover, differential
non-IoT/IoT charges, where the IoT plans are cheaper, can
be a strong incentive for the masquerade.
Validation. We first validate V1 by showing that IoT SIM
cards work for non-IoT devices. We purchase IoT SIM cards
used for CAT-4, CAT-1, and CAT-M1 IoT devices. We insert
each of them into our test smartphones, properly configure
their networking settings, and then restart the phones. Our
experimental results, collected from OP-I and OP-II, show
that all the smartphones successfully obtain IP addresses
from the cellular networks and access the Internet without
any issues.

We next validate V2 by examining whether the infras-
tructure can be fooled into thinking that a smartphone is
an IoT device. Initially, we discover that the OP-I and OP-II
networks can correctly identify connected non-IoT or IoT
devices, and show the device information on their web
pages. We then analyze the control-plane protocol traces
by using cellular diagnosis tools (e.g., MobileInsight [18]).
It is observed that the infrastructure identifies a connected
device based on the IMEI (International Mobile Equipment
Identity) carried in its IDENTITY RESPONSE message [13].
When connecting to the network, the device reports its IMEI
in the response to the message of IDENTITY REQUEST. This
implies that if the device reports a fake IMEI, the spoofing
can happen.

We then investigate how to make a mobile device report
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Fig. 3: When the IMEI spoofing on the smartphone lasts for
one month, OP-II still recognizes it as an IoT device, the LG
smartwatch, with a $5 charge as the IoT device access fee.

a fake IMEI. The IMEI is stored in the non-volatile memory
of the device modem, and the memory can be modified by
some tools (e.g., EFS Professional [17]). We here show that
the IMEI of a smartphone, LG G3, can be spoofed as that of
an IoT device, LG Watch Urbane 2nd, in the OP-II network;
the same result is also observed in OP-I. The validation
consists of four steps. First, we connect to the smartphone’s
modem via the EFS tool [17] and replace its IMEI with the
IoT device’s IMEI (i.e., 353649071060XXX), as shown in
Figure 2a. Second, we confirm the IMEI replacement on
the smartphone as shown in Figure 2b. Third, we reboot
the smartphone to let it report the spoofed IMEI to the
network. We then confirm its IMEI change on OP-II’s web
page, as shown in Figure 2c. It shows that the smartphone
has been recognized as the IoT device. Last, we keep the
IMEI spoofing on the smartphone for a monthly billing cycle
and discover that OP-II does not detect this abuse but still
charges the IoT device’s access fee (i.e., $5), as shown in
Figure 3. From an extended experiment with eight months
(the results are elaborated on in Section 4.3), we find that the
operator cannot detect the spoofing, even though several
hundred megabytes of mobile data are consumed on the
smartphone spoofing the IMEI of the IoT device.
Security implications. As new cellular IoT service charg-
ing demands arise, current security mechanisms for cellular
IoT support in the 3GPP standards are not sufficient to se-
cure carriers. We believe that addressing V1 and V2 requires
revisiting these security mechanisms.

4.1.2 Any Limitations Imposed on IoT Data Services?

The answer is expected to be yes when the infrastructure
offers differential data services to IoT and non-IoT devices.
However, this is not the case for the tested carriers. We
discover that a non-IoT device masquerading as an IoT
device can still retain the same data service quality while
paying less (V3). This allows adversaries to take advantage
of the carriers by purchasing cheaper IoT device access for
their non-IoT devices.
Validation. We validate this vulnerability by using iPerf
to examine TCP throughput performance on three devices:
(1) an IoT device (i.e., LG Watch Urbane 2nd) equipped
with an IoT SIM card, (2) a smartphone (i.e., Samsung S5)
with a non-IoT SIM card, and (3) the smartphone spoofing
the IoT devices IMEI with an IoT SIM card. We consider
both uplink and downlink cases and test each case for 10
runs. Figure 4 shows the 10th, 50th, and 90th percentiles of
the throughput results of those three devices in the OP-I
and OP-II networks. We observe that all the three devices
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Fig. 4: The uplink and downlink TCP throughput at the
10th, 50th, and 90th percentiles for an IoT device (i.e., LG
Watch Urbane 2nd), a smartphone (i.e., Samsung S5), and the
smartphone with the spoofing of the IoT device’s IMEI in the
OP-I and OP-II networks.

have comparable performance on the uplink and downlink
throughput in each operator’s network. For example, in
the OP-I network, the median uplink/downlink throughout
speeds for the IoT device, the smartphone, and the smart-
phone masquerading as an IoT device are 5.73/16.82 Mbps,
5.91/17.15 Mbps, 5.59/16.85 Mbps, respectively. This shows
that the networks do not enforce any noticeable restrictions
on IoT devices in terms of data transmission rates. Besides,
we do not observe that any restrictions are imposed on IoT
data usage volumes.
Security implications. Seemingly, carriers just make a
simple operational mistake, but this may not be the case.
This vulnerability can be attributed to two possible reasons.
First, carriers may not have incentives to restrict IoT data
services for IoT devices due to its limited benefits. For
example, for limited IoT data plan users, the more data
that IoT users use, the more profit that carriers can make.
Second, carriers may impose service restrictions based on
the theoretical maximum uplink and downlink rates of IoT
device categories (e.g., CAT-4: 50Mbps/150Mbps, CAT-1:
5Mbps/10Mbps), but they do not take any effect. This is
because wireless resources are shared by multiple devices
and the theoretical maximum rates are usually much higher
than the actual rates available to the networks.

4.1.3 A Proof-of-concept Attack

We devise an IoT masquerading attack based on the vulner-
abilities V1, V2, and V3. We consider that an adversary has
subscribed to a cellular network service with a limited or
unlimited data plan. (S)he adds a smartwatch to his/her
account and obtains its IoT SIM card from the carrier.
Afterwards, (s)he can start to launch the attack by letting
his/her smartphone masquerade as the smartwatch based
on the IMEI spoofing. We test three main cellular network
services on the smartphone: data, voice and text. The results
are summarized in Table 4. With the attack smartphone,
the adversary can make voice calls, send/receive short
messages and access the Internet at 10 different locations,
but only pay the IoT device access fee. The adversary can
save 50% and 75% of the smartphone device access charges
in the OP-I and OP-II networks, respectively. Note that
OP-II does not assign a dedicated phone number to the
smartwatch for voice and text services; the user has to use
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Operator Device Data Voice Text Dedicated Charge
Service Service Service number? (per month)

OP-I

Smartphone √ √ √ √
$10w/ spoofing

Smartwatch
√ √ √ √

$10
Smartphone

√ √ √ √
$20

OP-II
Smartphone √ √ √ √

$5w/ spoofing
Smartwatch

√ √ √
××× $5

Smartphone
√ √ √ √

$20

TABLE 4: Offered services and charges vary with the devices with or without the IMEI spoofing in the OP-I and OP-II
networks based on limited data plans.

the phone number belonging to the paired smartphone’s
SIM card. However, the attack smartphone can obtain a
dedicated phone number. It may be because OP-II prevents
the IoT SIM card from registering the VoLTE system on the
smartwatch, but it is not prohibited on the smartphone.

4.2 IoT Use Scenario Abuse
We next investigate whether IoT devices can work in unan-
ticipated use scenarios. Current carriers offer cheaper device
access fees to some IoT devices due to their limited use
scenarios. However, we discover the fourth vulnerability
(V4) that those IoT devices may not be restricted to their
anticipated use scenarios. We validate this vulnerability on
two different types of popular IoT devices: car-connected
mobile hotspots and smartwatches.

4.2.1 Car-connected Hotspots: Not Limited to only Vehicles
Car-connected hotspots are, by default, designed for using
only inside vehicles. However, when they are fully con-
trolled by adversaries, some malicious manipulations can be
performed to bypass the usage restriction. We discover that
the adversary may turn these car-connected hotpots into
common mobile hotspots, which offer mobile data services.

We observe that two hardware features of car-connected
hotspots restrict their usage to only inside operating vehi-
cles. First, its power supply is from the diagnostic connector
of OBD-II (On-Board Diagnostics II), which is a system for
the status report of various vehicle subsystems. The OBD-
II connector is not used for other non-vehicle systems, so
the car-connected hotspot is hardly powered on outside
vehicles.

Second, the hotspot automatically enters a sleep mode
after the vehicle has been turned off for a period of time.
The hotspot detects whether the vehicle is operating based
on voltage changes of the OBD-II connector. According to
the hotspot’s specification, it operates normally when the
voltage of the OBD-II connector is higher than 11.7 V. The
voltage of the OBD-II connector can increase up to 15.5 V at
the moment that the vehicle engine is ignited. The device
disables its hotspot function and enters the sleep mode,
when the voltage of the OBD-II connector drops to 11.7 V
and 9 V, respectively. Once the adversary makes a power
supply with the OBD-II connector interface and then sets its
voltage to be higher than 11.7 V, the device can be turned
into a common portable hotspot.
Validation We validate this vulnerability by testing
whether a car-connected hotspot can continue to be used

outside vehicles with our customized power supply. To keep
the device’s hotspot function active, the power supply is
made to output 12 V from a power bank through a voltage
regulator. We then connect the power bank’s ground and
power pins to the fourth and sixteenth pins of the OBD-II
connector, respectively, via the regulator. After powering on
the hotspot, we connect a Wi-Fi client to the hotspot and
use the client to keep generating traffic to/from the Internet
using ping. We run the test for a whole day, and the traffic
is not interrupted.

4.2.2 Smartwatches: Not Constrained by Hardware or Soft-
ware

Smartwatches with hardware constraints (e.g., small screen)
are mainly developed to assist mobile users in getting
voice/text services, simple data services (e.g., voice assis-
tants), and notifications from their paired smartphones.
Therefore, by design, there is only a small number of
smartwatch applications, and their functions are more lim-
ited than smartphone applications. For example, Google
wearable devices are not allowed to install standalone
Gmail (i.e., working without paired smartphones), Chrome
browser, and Youtube. However, these hardware/software
constraints are not sufficient to restrict the real-world us-
age of the smartwatch. Specifically, the smartwatch can be
turned into a mobile data gateway, which forwards data
packets between a Wi-Fi device and the Internet, to pro-
vide Internet access over Wi-Fi. Note that the Wi-Fi device
connects to the smartwatch via Wi-Fi and the smartwatch
connects to the Internet via the cellular network.
Validation. We validate this vulnerability by examining
whether the network forbids a smartphone’s data packets
which are forwarded by the smartwatch. We develop a data
forwarding application on the smartwatch. It first receives
the smartphone’s data packets from the Wi-Fi interface and
sends them to our external UDP server on the Internet
through the cellular network interface. In our test, the smart-
phone transmits about 500 MB traffic to the forwarding
smartwatch. Our experiment shows that all the transmitted
packets are received by our Internet server. No restrictions
from the OP-I and OP-II networks are observed for this
usage.
Security implications. This vulnerability can be at-
tributed to two potential issues. First, there are various
cellular IoT use scenarios, so it is challenging for the in-
frastructure to identify all possible use scenarios. Second,
even though carriers deploy some constraints or security
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Fig. 5: The uplink/downlink TCP throughput results at
the 10th, 50th, and 90th percentiles are plotted for an IoT-
masqueraded hotspot (i.e., Mobley) and a normal mobile
hotspot (i.e., Velocity) in the OP-I network, given a laptop
client placed at six indoor locations in our campus.

mechanisms on the IoT devices, they can be easily bypassed
at low cost. For example, car-connected devices have to be
powered on via the OBD-II interface, and smartwatch users
are not allowed to install the applications that smartphone
users can install.

4.2.3 Two Proof-of-concept Attacks

We devise two proof-of-concept attacks to assess the real-
world damages of the vulnerability V4.
Car-connected IoT abuse: portable mobile hotspot In
this attack, we turn a car-connected IoT hotspot (i.e., Mob-
ley) into a mobile hotspot and then compare its perfor-
mance with an ordinary mobile hotspot (i.e., Velocity). We
here present the results obtained in the OP-I network,
but skip that of OP-II because of similar phenomena. We
connect a laptop with an 802.11ac Wi-Fi card to each of
those two hotspots, Mobley and Velocity, and gauge its
uplink/downlink performance. In the test, the hotspots are
located at the same location, and the laptop is placed at six
different locations, which are spaced at 2-meter intervals,
for a total range of 10 meters (i.e., S1-S6). S1 is the closest
to the hotspot location, whereas S6 is the farthest from the
hotspots.

We test uplink and downlink throughput for 10 runs
in each case and plot 10th, 50th, and 90th percentiles of
the throughput results in Figure 5. We observe that the
two hotspots have comparable performance for both uplink
and downlink throughput at each location. Specifically, the
differences between their median throughput results are
within only 5.62% and 2.03% for all the cases in the OP-I and
OP-II networks respectively. Neither of the hotspots always
outperforms the other. Take the OP-I’s limited data plans as
an example for the gain estimation of this attack. $10 and
$20 device access fees are charged for the car-connected and
normal mobile hotspots. With this attack, the adversary can
gain a hotspot service for 50% cheaper. The gains can vary
with different carriers and data plans, as shown in Table 3.
Wearable IoT abuse: mobile data gateway We devise an
attack that abuses a wearable IoT, smartwatch, to be a mo-
bile data gateway, which can provide a local area network
with Internet access through the mobile data service. This
IoT-masqueraded gateway can cooperate with a Wi-Fi AP
to supply Internet access to Wi-Fi devices. We enable it to

Internet

Wi-Fi

Cellular 

Network

LTE

VPN 

ServerWiFi router

Wi-Fi

VPN Tunnel

WIFI LTE IP

VPN 
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Fig. 6: The network architecture that turns a smartwatch to a
mobile data gateway based on a VPN approach.

Fig. 7: The data usage of the smartwatch that masquerades as
a mobile gateway. The 91% traffic volume of the total 665 MB,
which is consumed by the web and applications, is mostly
used by the gateway application.

work for all the applications on Wi-Fi devices by taking a
VPN approach.

Figure 6 shows the network architecture that turns a
smartwatch to a mobile data gateway. It consists of four
components: (1) a VPN server deployed on the Internet, (2)
an IoT device supporting both Wi-Fi and cellular networks
(e.g., LG Watch Urbane and Samsung Gear S3), (3) a Wi-Fi
AP, and (4) a VPN client installed on the Wi-Fi device (here,
a smartphone). Both the smartphone and the smartwatch
connect to the AP. The VPN client on the smartphone
establishes a VPN tunnel with the VPN server, and the
smartwatch forwards data between the VPN client and the
VPN server through its Wi-Fi and LTE interfaces.

Our experimental results show that the smartphone’s
applications can access the Internet and work as usual
without any changes. Figure 7 shows the smartwatch’s data
usage. The 91% traffic volume consumed by the web and
applications is mostly used by the application that forwards
data between the Wi-Fi and LTE networks. We further
examine the smartwatch’s forwarding bandwidth based on
TCP traffic using iPerf. It is observed that the median of
the TCP throughput over 10 runs can achieve 4.1 Mbps.
Note that this attack can work without the Wi-Fi AP in
two cases. First, the IoT device supports the Wi-Fi direct
technology, which enables Wi-Fi devices to connect to each
other directly. Second, the Wi-Fi device can run the VPN and
Wi-Fi AP functions simultaneously. As a result, this attack
allows the adversary to pay 50% and 75% less in the OP-
I and OP-II networks, respectively. Both operators are not
capable of detecting or preventing this attack.

4.3 Long-term IoT Attack Evaluation

We conduct a long-term attack evaluation on the IoT mas-
querading for eight months, in order to examine whether
carriers deploy any anomaly detection mechanism for IoT
attacks. In the experiment, we subscribe to a 2 GB data plan
and then add a smartphone (i.e., Samsung J7) and an IoT
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Fig. 8: An 8-month evaluation of the IoT masquerading attack:
a smartphone and an IoT device which another smartphone
masquerades as (i.e., IoT-spoofing phone) subscribe to the
same 2 GB mobile data plan. Top: monthly data usage
volumes; middle: the ratio of the IoT-spoofing phone’s data
usage to the normal phone’s; bottom: monthly device access
fees from OP-II.

device (i.e., LG Watch Urbane 2nd) to this plan. Their device
access fees are $20 and $5, respectively. We use another
smartphone (i.e., Samsung S5) to masquerade as the IoT
device (i.e., LG Watch Urbane 2nd) with IMEI spoofing.
During the 8-month duration, the IoT-spoofing phone is
scheduled to access the Internet at least once every day.

Figure 8 shows monthly data usage volumes for both
the smartphone and the IoT-spoofing phone (top), monthly
usage ratios (the ratio of the data usage of the IoT-spoofing
phone to that of the normal smartphone) (middle), and
device access fees charged by carriers (bottom). We make
three observations. First, the data usage volumes of the
IoT-spoofing phone range from 50 MB to 650 MB, whereas
those of the normal smartphone are from 115 MB to more
than 900 MB. Second, the ratio of the data usage of the
IoT-spoofing phone to the normal smartphone ranges from
3.36% to 80.87%. Third, the tested carrier keeps treating
the IoT-spoofing phone as an IoT device according to its
persistent IoT device access fee of $5. This result shows that
current anomaly detection mechanisms are not able to detect
the attack, even though the IoT-spoofing phone’s monthly
usage volume can be as high as 650 MB or the ratio of its
usage to that of the normal smartphone is 80.87%.

5 ATTACK INCENTIVE MODELING

In this section, we model mobile user bills and analyze
the adversary’s maximum gain, as well as give three attack
instances to showcase real-world impact.

5.1 Mobile User Bills Modeling
Suppose that there are s different monthly service plans
from an operator, and a mobile user has a subscribed service
plan j, monthly data usage u, and nt devices from each
device type t. Given i different device types, the number of
devices owned by the user can be represented by Σi

t=1nt.
The user’s monthly bill can thus be modeled as follows:

Billj(u, n1, · · · , ni) = Σi
t=1nt · αj,t+

max{βj,1, βj,2 · u · I(u ≤ capj), βj,2 · capj · I(u > capj)}+
βj,3 · (u− capj) · I(u > capj),

where αj,t is the device access fee of device type t in plan j,
βj,1 is the minimal data service fee in plan j (e.g., $35 in the
OP-II’s 2GB plan), βj,2 is the unit price when u is lower than

capj , which is the maximum data usage for the unit price
βj,2, βj,3 is the unit price after u exceeds capj , and I(x > y)
is a boolean value (0 or 1) indicating if x is larger than y.
Maximal attack gain. Suppose that the adversary uses a
service plan j before launching an attack. To maximize the
attack gain, the adversary can choose the best service plan
for his overall usage and the best device type to masquerade
as for each device. The gain can be represented as follows:

Billj(u, n1, · · · , ni)−min{Billk(u, n′1, · · · , n′i)}

where Σi
t=1nt = Σi

t=1n
′
t and k = 1, · · · , s. By considering

all the possible service plans and the charges of all the
device types, the adversary can identify an attack policy
that maximizes the gain.

5.2 Three Attack Instances

Example I: light usage (Saving:$70→$14). Bob usually
has free Wi-Fi access and thus requires only small volume
of mobile data service on his smartphone. Assume that the
required volume is less than 1 GB per year. According to
OP-I’s monthly data plans, he needs to subscribe to at least
a 3 GB data plan with a monthly service fee of $50 and
adds his smartphone to the plan with a monthly device
access fee of $20. For a one-year time period, he should
pay $840 ($70×12). Based on the analysis of maximum gain,
the best attack policy is to purchase a monthly 100 MB
IoT CAT-1/CAT-M1 plan, which has a monthly service fee
$14, and then launch the IoT masquerading attack on his
smartphone. The attack can reduce his annual bill from $840
to $168 , offering an 80% saving.
Example II: moderate usage (Saving:$70→$22). Bob usu-
ally uses around 3 GB mobile data per month. The OP-I’s
3 GB monthly data plan can be a perfect match for him.
The monthly fee is $70 including $50 service access and
$20 device access fees. The best attack policy for him is to
purchase a 3 GB monthly IoT data plan, which only charges
$22, and then launch the IoT masquerading attack on his
smartphone. His monthly bill can have a 68.5% reduction,
from $70 to $22.
Example III: heavy usage (Saving:$160→$90). Bob and
his three family members together use more than 8 GB
mobile data per month. The OP-II’s unlimited data plan
is a good match for them. With four smartphone lines, a
monthly fee $160 is charged for the unlimited data plan.
By launching the IoT masquerading attack, the cost can
be reduced to $90, where $75 comes from one smartphone
line in the unlimited plan and $15 ($5×3) comes from three
smartwatch lines that can be used to masquerade for their
three smartphones. This results in a 43.75% saving for Bob’s
family; on the other hand, there is a 43.75% revenue loss for
OP-II on this account.

6 WHY IS IT HARD TO SECURE CELLULAR IOT
SERVICE CHARGING?
To secure cellular IoT service charging, the network infras-
tructure needs to accurately identify IoT devices and use
scenarios. However, this can be challenging in practice. We
next analyze several potential and existing solutions.
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(a) Sony C6806 (b) Samsung S5 (c) Samsung S7

(d) Nexus 6P (e) LG G3 (f) LG Watch

Fig. 9: QPSK constellation diagrams collected on six mobile devices.

6.1 Identifying Devices is Challenging

Current cellular networks identify a device based on the
IMEI reported by the device itself. When the adversary has
full control over the device, it is challenging to prevent its
IMEI from being altered. We next introduce four possible
remedies for the device identification and discuss their
drawbacks.
Profiling-based device identification. Cellular IoT de-
vices usually have limited software/hardware capabilities,
so the usage volume of their mobile data services can be
expected to be low. For example, due to the smartwatchs
small display, its Android OS does not support standalone
browser and Youtube applications. This can prevent IoT
devices, such as smartwatches, from consuming as much
data traffic as smartphones. The infrastructure may thus be
able to identify the IoT devices based on such low-traffic
profiles.

However, this approach has two potential technical is-
sues. First, data usage patterns can vary with users. Given
that an IoT device’s daily usage volume exceeds a speci-
fied threshold, which may be determined based on some
statistical usage results, the carrier is still unable to ensure
whether the IoT masquerading attack is indeed happening.
Second, various IoT devices can have different data usage
patterns. Profiling all IoT device types can lead to non-
negligible overhead for carriers since there will be more and
more new IoT devices in the near future.
Hardware-based device identification. Potential
hardware-based solutions include the ARM TrustZone
and the hardware-based public-key cryptography. The
ARM TrustZone has been supported by many popular
Cortex-A class processors, crypto chips and secure elements
with tamper-proof blocks. Carriers can leverage it to protect
the IMEI from being modified by the adversary. However,
not all the user devices support this feature. The adversary
can easily bypass the protection by using the mobile devices

developed on top of the SDR (Software Defined Radio)
platforms, which lack the ARM TrustZone support.

With public-key cryptography, each mobile device needs
to be assigned a key pair of private and public keys, and an
X.509 certificate which is signed by a CA (Certification Au-
thority). The infrastructure can identify each device based
on its response to a challenge. Nevertheless, this approach
has two major issues. First, not all of IoT devices can support
public-key cryptography due to resource constraints (e.g.,
there is no enough storage space to install security libraries).
Second, enabling the public-key cryptography support for
the device identification requires modifications to current
cellular network standards.

RF fingerprint-based device identification. Another pos-
sible solution is to identify devices based on their different
RF fingerprints. The differences come from device types
and the imperfections of device hardware. This has been
proposed to address some security issues such as intrusion
detection [19], access control [20], wormhole detection [21],
and to improve inter-cellular security [22], to name a few.
To assess the effectiveness of this approach, we conduct
experiments using the OpenAirInterface (OAI) platform,
a software-defined 4G LTE infrastructure [23]. We collect
the RF signals transmitted by various mobile devices that
connect to the OAI eNodeB. The experiment starts after
the tested device is powered on and stops after the RRC
(radio resource control) connection between the device and
the OAI eNodeB is established. Note that we take two
measures to prevent the experiment from affecting other
normal mobile users. First, we configure the eNodeB to use
the LTE band 7, which is not used by carriers in North
America. Second, we put the OAI platform and the mobile
devices in a RF shielded enclosure box. Figure 9 shows
the QPSK (Quadrature Phase-Shift Keying) constellation
diagrams of six mobile devices including IoT and non-
IoT devices. Seemingly, we can identify these devices by
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analyzing their constellation diagrams, especially for the LG
G3, LG Watch Urbane 2nd and Sony C6806. However, this
approach is not scalable as it requires the eNodeB to collect
all the IoT devices’ RF fingerprints.
Tethering-detection-based device identification. Tether-
ing detection has been deployed by operators to detect if
users provide their PCs with Internet access by enabling
Wi-Fi or USB tethering on their smartphones. However, it
still requires significant modifications since it is designed
for smartphones rather than IoT devices, and some studies
have reported that they can be bypassed (e.g., faking OS
signatures).

6.2 Identifying Use Scenarios is Challenging

The network is capable of identifying abnormal use sce-
narios of an IoT device to some extent. Take car-connected
hotspots as an example. The network has cell-level mobility
information of each hotspot, and can keep track of its
mobility patterns. However, it is still difficult to identify
whether the hotspot is being used inside a vehicle or not.
Even if the hotspot keeps staying within a cell for a long
time period, it is not necessarily outside the vehicle. It may
be due to a serious traffic jam. With the proliferation of
cellular IoT devices in the near future, there may be more
unprecedented IoT use scenarios. It can be very challenging
for the network infrastructure to identify the use scenario of
each device.

7 SOLUTION: MITIGATING ATTACK INCENTIVES

We seek for a standard-compliant solution that can rapidly
mitigate the IoT attacks. We thus consider eliminating V3,
and it can also mitigates the attack incentives on the other
three vulnerabilities. We leave the solutions for V1, V2, and
V4, which require time-consuming standard modifications
and cannot be done shortly, to the future design. Specifically,
two new mutual authentication mechanisms are required to
address V1 and V2: one is between an IoT SIM card and an
IoT device, as well as the other is between the device and
the infrastructure. The mutual authentication based on the
public-key cryptography can be a potential solution option,
but it requires modifications to 3GPP standards, which is
time-consuming and cannot be done in a short time. To
address V4, a new security mechanism shall be introduced
to confine IoT devices to their specific use scenarios. It not
only requires standard support but also is challenging for
carriers.

To this end, we propose an anti-abuse service model
to address V3. This can also largely mitigate the attack in-
centives on other vulnerabilities. Specifically, our approach
ensures that no IoT users can get better service quality than
non-IoT users when the IoT users pay less, which does not
require any modifications to SIM cards, mobile devices, and
cellular network standards but minimal support from the
infrastructure. Moreover, our model is scalable to support
various IoT devices and use scenarios and achieves both
data service fairness and spectrum utilization efficiency. We
finally implement and evaluate it using the OAI platform.

7.1 Anti-Abuse Service Model

The major idea of this service model is to serve each cellular-
connected device with service quality based on its cellular
IoT technology category and the device access fee paid
by its owner. This can prevent different charges on the
same quality of services that the adversary can abuse. Our
model consists of two components: operational IoT service
consistency and charge-aware service access control. They
together ensure that no IoT users can get better service
quality than non-IoT users when the IoT users pay less. Note
that this assurance cannot be achieved by simple IoT service
throttle mechanisms (e.g., limiting data rates to 1 Mbps),
since the available data rates of all the devices can be smaller
than the IoT rate limits in practice.

7.1.1 Operational IoT Service Consistency
With distinct cellular IoT technologies, IoT devices have
different capabilities in terms of theoretical maximum
uplink/downlink speed. For example, for an IoT de-
vice supporting CAT-M1, the theoretical maximum up-
link/downlink speed is 1 Mbps/1 Mbps, whereas for an
IoT device supporting CAT-1, the theoretical maximum
uplink/downlink speed is 5 Mbps/10 Mbps. However, in
practice, different entities including IoT devices, SIM cards,
and the network infrastructure do not operate in consistency
with the cellular IoT profiles. That is, the network may not
restrict the performance of the IoT SIM cards based on their
profiles. This leads to the gains which the adversary can
get by the IoT masquerading. We thus propose that all the
parties in the cellular ecosystem shall be consistent with the
support of the IoT profiles. For example, when an IoT user
subscribes to an IoT sim card for his/her CAT-1 IoT device,
the maximum uplink/downlink speed of the CAT-1 IoT SIM
card shall be limited to 5 Mbps/10 Mbps by the network no
matter what device is used for the SIM card. Therefore, even
if the adversary performs the IoT masquerading on a non-
IoT device using the IoT SIM card, the device can get only
10 Mbps as its maximum speed.

This service consistency mechanism contains two major
tasks in the core network operation. First, the network
infrastructure should maintain maximum uplink/downlink
speed information for each IoT service subscription based
on its subscribed cellular IoT technology category. Second, it
should apply the maximum speed to the EPS bearer context
activation procedure [13], which is initiated when an IoT
device accesses the IoT service with which the SIM card is
associated.

7.1.2 Charge-aware Service Access Control
Due to fewer resources needed for IoT services, carriers
inevitably provide them with cheaper charge plans than
conventional non-IoT plans. However, they do not restrict
the IoT services from the network but only rely on the in-
herent constraints of IoT devices. This is why the adversary
can abuse the IoT devices to have non-IoT services with
cheaper charges. We argue that these differential charges
shall be reflected in the service quality which includes traffic
priority and maximum transmission rate. This causes the
gaps between IoT and non-IoT services to correlate with
their charges, thereby reducing attack incentives. We next
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elaborate on how to correlate the charges with the priority
and the maximum rate.

In the LTE network, there are 9 priority levels, which are
assigned to different types of traffic [24]. The level number
decreases with the increase of priority. For example, the
signaling and voice traffic flows of VoLTE (Voice over LTE)
respectively have levels 5 and 1, whereas the flows of mobile
data services on non-IoT devices are usually given the level
9, which is the lowest priority. Since IoT services are cheaper,
their traffic flows should have lower priority than level 9.
We then propose to use the level ranging from 9 to 10 to set
priority for IoT services and correlate it to their differential
charges.

The priority value for an device X can be formulated as:

PriorityX = 10.0− ChargeX
ChargeHighest

, (1)

where ChargeX is the device access fee of device X and
ChargeHighest is the highest device access fee among the
devices in the same type of data plan (e.g., limited or
unlimited data plan) in the same network. For example,
in a 2GB limited data plan, $20 and $5 are charged for
a smartphone and an LG smartwatch, respectively. Their
priority levels should be set to 9 and 9.75 (i.e., 10.0−$5/$20).
The cheaper a device’s access fee a user pays, the lower the
priority of device traffic flows (s)he can receive. Note that we
elaborate on how to set various priority levels in Section 7.2.

We next restrict maximum uplink/downlink transmis-
sion rates for IoT devices. We determine the maximum
transmission rate of each device by considering both its
priority value and the maximum rate given by the opera-
tional IoT service consistency. Assume that the maximum
rate for non-IoT devices in the same type of data plan is
NonIoTMaxRate and the maximum IoT rate from the ser-
vice consistency is InitialMaxRateX . Then the maximum
rate for the IoT device X is formulated as:

MaxRateX = Min(NonIoTMaxRate× (10− PriorityX),

InitialMaxRateX).
(2)

Take the LG smartwatch as an example. Since its device
access fee is $5 and the smartphone’s is $20 in the OP-II net-
work, its service priority and maximum rate are respectively
9.75 and 25% of the maximum rate that the smartphone
can receive when NonIoTMaxRate× 0.25 is smaller than
InitialMaxRatewatch.

7.1.3 Computational Complexity Analysis

We next analyze computational complexity of the opera-
tional IoT service consistency and the charge-aware service
control. We consider the time complexity of associating a
new IoT service subscription with its transmission capabil-
ity. After the association, the network can easily apply the
transmission capability to an IoT device based on its SIM
profile when it attaches to the network. In the analysis, we
assume that (1) the GSMA’s and operators’ IMEI and SIM
card databases are maintained based on the B+ tree [25] (B+
tree is a common data structure used by database systems,
such as mySQL), (2) the time complexity of performing
an arithmetic operation, such as subtraction, multiplication,

division, is O(1), and (3) the time complexity of read-
ing/writing an item in GSMA or operators’ databases is
O(1).
Operational IoT service consistency: Making the service
consistent consists of three main steps. First, the network
obtains the information of cellular IoT technologies that the
device can support based on its IMEI, which is collected
from the device owner. It can be queried from the GSMA’s
global central IMEI database (https://imeidb.gsma.com),
which stores all the IMEIs with device profiles, such as man-
ufacturers and software/hardware capabilities. The time
complexity of the search operation on a B+ tree database
is O(log n) [25], where n is the number of global mobile
devices stored in GSMA’s IMEI database. Second, the net-
work identifies the theoretical maximum uplink/downlink
speed of the supported IoT technologies. It takes O(α),
where α is the number of various cellular IoT technologies.
Third, the network associates the device’s IoT SIM card with
the transmission capability, and adds it into the SIM card
database. The time complexity of a B+ database insertion is
O(log β), where β is the number of active SIM cards stored
in the operator’s SIM card database. In summary, the total
time complexity isO(log n)+O(α)+O(log β). Since the time
complexity related to the number of global mobile devices
can dominate in practice, the time complexity for opera-
tional IoT service consistently mechanism can be reduced to
O(log n).
Charge-aware service access control: This module takes
three major steps to add a new IoT service subscription.
First, it obtains the highest charge among all the devices
in the same type of data plans. The time complexity is
O(β′), where β′ is the number of active SIM cards in the
type of data plan to which the IoT user subscribes (e.g.,
limited data plan). Since, in practice, β′ is smaller than β
(i.e., the number of all active SIM cards that the operator
currently support), we can reduce O(β′) to O(β). Second,
it obtains the maximum rate of non-IoT devices. It takes
only a constant time O(1), since carriers, including OP-I
and OP-II, usually apply the same maximum rate to all
non-IoT devices. Third, it calculates the IoT subscription’s
priority value and then determines the final maximum
rate according to Equation 2. The calculation costs only a
constant time O(1). In summary, the total time complexity
is O(β) +O(1) +O(1) and can be reduced to O(β).
Overall complexity: As a result, the overall time complexity
is O(log n) +O(β), where n is the number of global mobile
devices including cellular IoT devices and β is the number
of active SIM cards that the operator currently support. In
practice, n is much larger than β.

7.1.4 Merits
We next summarize three major merits of the anti-abuse
service model. First, the model does not require any mod-
ification to cellular IoT standards or devices, since its two
components can be carried out in the standard EPS bearer
context activation procedure [13], which is initiated by the
infrastructure when an IoT device accesses the IoT services.
Second, it can be scalable to support a variety of devices
and use scenarios, as it does not require calibration of the
IoT service rates for various devices and use scenarios. This
is especially relevant with more and more devices being
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introduced in the future. Third, it can achieve both data
service fairness and spectrum utilization efficiency. For the
fairness, it can guarantee that no IoT devices can get better
services than non-IoT devices when the IoT owners pay less.
For the efficiency, IoT devices still have chances to achieve
their maximum speeds when radio resources are sufficient
(e.g., no contention comes from non-IoT devices). Note that
for limited IoT data plan users, the more data that IoT users
use, the more profit that carriers can make.

7.2 Implementation
We implement the anti-abuse model on the OAI platform.
It consists of the 4G core network and RAN. The 4G core
network runs on a laptop (Acer Aspire E5-575-53EJ). The
RAN contains the eNodeB on a PC (Dell Inspiron 3268) and
a software-defined radio (USRP B210). We mainly modify
three entities: the HSS, the MME, and the eNodeB (see
Figure 1).
HSS. We add two types of new information in the user
subscription data, which are associated with each SIM card:
user equipment profile and charge rate class. The former
indicates the highest technology category (e.g., CAT-4) that
the SIM card can support. The latter represents the operator-
specific charge rate class (e.g., 25% off, 50% off) to which
the SIM belongs. These are used by the MME to determine
service priority for the SIM. We add the delivery of this
information to the normal procedure that the MME has
to obtain user authentication information from the HSS.
The new information entries are included in an element
UE-Usage-Type of the response to the request Authenti-
cation Information Retrieval, which is sent from the MME to
the HSS.
MME. The maximum uplink/downlink rates and the
service priority are set for each SIM card based on that
new information provided by the HSS. We introduce new
QoS to the EPS radio access bearer (E-RAB). During the
E-RAB Setup procedure [26], the MME specifies those two
restrictions in the fields, UE Aggregate Maximum Bit
Rate [26] and E-RAB Level QoS Parameters [26], re-
spectively in the E-RAB Setup Request message, which is sent
to the eNodeB.
eNodeB. We support new priority levels (e.g., 9.25 and
9.5) by defining new QoS Class Identifier (QCI) values,
which are used to represent QoS classes in the LTE network.
Each QCI value is an 8-bit unsigned octet. The QCI values,
ranging from 128 to 254, are reserved for operator-specific
usage, so new QCI values can be added in this range. In our
implementation, we define two new priority levels 9.25 and
9.5 by adding new QCI values 129 and 130, respectively.
Note that the eNodeB in the current OAI implementation
does not support full QCI functions specified by the stan-
dards. We thus add a Service Control Entity (SCE), which
is a Linux server, between the eNodeB and the 4G core to
fulfill the regulation of the maximum rates and the service
priority.

7.3 Evaluation
We evaluate our solution based on the OAI-based prototype.
We use 5 sysmoUSIM-SJS1 SIM cards, which are standard-
compliant, and add their information to the HSS database.

SIM Highest Theoretical UE Priority Mapped
DL/UL speed Value Operator Plan

SIM1 CAT-10 (450 Mbps/150 Mbps) 9 Non-IoT, $20
SIM2 CAT-4 (150 Mbps/50 Mbps) 9.5 IoT, $10
SIM3 CAT-1 (10 Mbps/5 Mbps) 9.5 IoT, $10
SIM4 CAT-M1 (1 Mbps/1 Mbps) 9.75 IoT, $5
SIM5 NB-IoT (0.2 Mbps/0.2 Mbps) 9.75 IoT, $5

TABLE 5: The configurations of our test SIM cards.
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Fig. 10: Maximum, median and minimum uplink/downlink
speeds vary with SIM cards.

They are configured to have five different categories (i.e.,
CAT-10, CAT-4, CAT-1, CAT-M1 and NB-IoT), and classified
into three priority classes: 9, 9.5, and 9.75. The device access
fees of those three priority classes are respectively 0%, 50%
and 75% cheaper than non-IoT devices. These configura-
tions are summarized in Table 5. We use the iPerf tool
to assess throughput of user devices.
Operational IoT service consistency. We use one device
(Nexus 6p) with different SIM cards shown in Table 5
to assess the operational consistency for IoT profiles. We
test both uplink and downlink speed performance. The
test on each SIM card has 10 runs with 30 seconds each.
Figure 10a shows maximum, median and minimum down-
link/uplink speed results for the SIM cards. There are
two observations. First, the maximum throughput results
of SIM1 and SIM2 are similar (i.e., 8 Mbps and 16 Mbps
for uplink and downlink, respectively), because they are
bound by the OAI platform’s maximum throughput, which
is smaller than their maximum speeds. Second, for the other
three SIM cards, the maximum uplink/downlink speeds are
4.94 Mbps/9.96 Mbps (SIM3), 0.99 Mbps/0.93 Mbps (SIM4)
and 0.18 Mbps/0.19 Mbps (SIM5), respectively. They are
bound by the regulated maximum speeds of the cellular IoT
technologies.
Charge-aware service control. We next examine whether
the service priority control can take effect in the proto-
type. We use two phones, Nexus 6p and Samsung S5,
with SIM1 and SIM2, respectively. Both phones have much
larger maximum downlink/uplink throughput than the
OAI platform’s throughput bottleneck. The service priority
levels assigned to them are respectively 9 and 9.5 based
on the priority classes. We have 10 runs for each test. In
each run, we generate traffic to gauge throughput perfor-
mance on them simultaneously, and examine how they
affect each other. Figure 10b plots maximum, median and
minimum uplink/downlink results. It is observed that the
maximum throughput results for Nexux 6p with SIM1 and
Samsung S5 with SIM2 are 5.03 Mbps/11.7 Mbps and
1.94 Mpbs/4.8 Mbps, respectively. It confirms that the ser-
vice flows of Nexus 6P with priority level 9 have higher
priority than those of Samsung S5.
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8 DISCUSSION

We next discuss several concerns.
Why not just limit the rates or usage of IoT services?
This is not practical in two aspects. First, for the limited
IoT data plans, carriers do not have incentives to limit
rate/usage, since no limitations of using data can make
more profit for the carriers. Second, for the unlimited data
plans, though carriers may be willing to limit rate/usage,
it is challenging to determine rate caps which can satisfy
various IoT users and scenarios. For example, it is not easy
for carriers to determine a proper rate/usage cap for a car-
connected mobile hotspot since it provides similar functions
as a portable mobile hotspot. A lower rate/usage cap may
reduce users’ willingness to subscribe to IoT services, but a
higher rate/usage cap can increase attack incentives.
Simple pricing policy issues? People may think that our
findings are carrier-specific pricing policy issues instead of
security loopholes. However, this is not the case. The fun-
damental issues are rooted in 3GPP security design flaws,
where there is a lack of mutual authentication between
SIM cards and devices, as well as that between devices
and the infrastructure. These flaws can be exploited by the
adversary to launch a variety of attacks. For example, the
adversary can connect an SDR-based mobile device that is
not carrier-certificated and flood many control-plane spam
messages to the network. Our cellular IoT charging-based
attack is just one instance of them.
Short-lived and IoT-technology-specific issues? Our
identified issues are independent of IoT technologies, but
are rooted in device authentication, access control and IoT
charging security. No evidence indicates that they will be
addressed in those security components for upcoming IoT
technologies (e.g., NB-IoT).
How about 5G IoT? According to the latest 5G security
standards [27], the mutual authentication mechanisms be-
tween IoT SIM cards, IoT devices, and the network infras-
tructure are still missing. Thus, 5G carriers will still suffer
from the insecure IoT data charging if they apply differential
charging schemes to IoT and non-IoT users.
Does the embedded SIM (eSIM) address all issues? The
eSIM is still in its early deployment phase, and the remov-
able SIM will not be phased out in the foreseeable future.
Moreover, using the eSIM cannot address all identified
security issues, e.g., the IoT use scenario abuse.
Carrier-dependent issues? Some vulnerabilities are car-
rier dependent (e.g., no limits on IoT data speeds), but they
are not the critical ones (e.g., device authentication) for the
security threats. They can only affect the degree of attack
damage.

9 RELATED WORK

Mobile Security. Mobile security has been an active research
area in recent years. Researchers mainly study the secu-
rity vulnerabilities of mobile data service charging, mobile
devices, mobile network infrastructure, and mobile appli-
cations/services. Some interesting findings are reported,
which include the anonymization of the SIP protocol [28],
design flaws of mobile operating systems (e.g., Android and

iOS) [29]–[31], charging attacks of mobile data services [3]–
[5], [7], [32], spam and fraudulence attacks through text
and voice services [33], [34], vulnerable usage of Android
Internet sockets [35], vulnerabilities of VoWiFi [36] to name a
few. Most of the early research works target non-IoT devices
(e.g., smartphones), as well as their mobile applications and
services. However, our work focuses on cellular IoT devices
instead of smartphones, tablets or other non-IoT mobile
devices.

IoT Security. Current research studies can be categorized
into three dimensions: (1) device software and hardware, (2)
network protocols, and (3) security architecture. In the first
dimension, a study [37] shows that an IoT botnet based on
the Mirai malware [38] is able to launch a 600 Gbps traffic
attack. Another work [39] presents a threat that adversaries
can compromise smart meters to reduce their utility bills.
Liu et al. [40] propose an ARM TrustZone based virtual
sensing system to enable a safe, isolated environment for
IoT devices. Gao et al. [41] develop an easy access solution
for authenticated users to access the voice-based assistants.
Ding et al. [42] discover possible physical interactions and
generates all potential interaction chains across applications
in IoT environment.

For the IoT network protocols, Sastry et al. [43] discover
several security vulnerabilities and pitfalls in IEEE 802.15.4,
which is designed for wireless communication among low-
power IoT devices. Soltan et al. [44] and Herwig et al. [45]
study the IoT botnet and analyze its attacks on power grids
and peer-to-peer networks.

For the IoT security architecture, some novel secu-
rity mechanisms have been proposed, e.g., data-origin
authentication, integrity verification, privacy preserving,
and identity-based encryption. Jia et al. [46] propose
ContexIoT, a context-based permission system for IoT
platforms. It provides contextual integrity [47] and imple-
ments it on the Samsung SmartThings platform. Das et
al. [48] propose a deep-learning based classifier for IoT
authentication. Harris et al. [49] propose to protect user
data against leakage by adopting the CryptoCoP-based en-
cryption and a unique MAC address rotation mechanism.
Wang et al. [50] conduct an analysis of the IFTTT and
enumerate the inter-rule vulnerabilities that exist within
trigger-action platforms. Haddadi et al. [51] introduce the
SIOTOME architecture between the network edge and the
ISP to defend against attacks from compromised IoT de-
vices. Memos et al. [52] study the security challenges of the
upcoming IoT network architecture, and media security and
privacy in wireless sensor networks (WSNs) and develop an
efficient algorithm for media-based surveillance systems in
IoT network for smart city framework. Stergiou et al. [53]
do the security survey of IoT and Cloud Computing and
show the security challenges of the integration of IoT and
Cloud Computing. Celik et al. [54] present a policy-based
enforcement system IoTGuard for IoT, which protects users
from unsafe and insecure states. Moreover, some researchers
focus on improving the efficiency of the systems leveraging
the blooming of IoT devices (e.g., media-based IoT devices
such as security camera and senors) and cloud computing
to secure our society. For example, Psannis et al. [55] de-
velop an efficient algorithm for encoding advanced scalable
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media-based smart big data on intelligent cloud computing
systems, which can efficiently process the smart big data
generated by a great number of media-based IoT devices
(e.g., security camera). Stergiou et al. [56] leverage the
blooming of IoT in cloud computing to develop a new type
of network for intelligent media-data transfer. Plageras [57]
investigates new systems for efficiently collecting and man-
aging sensors data in a smart building by leveraging IoT,
big data, cloud computing, and monitoring technologies.
Different from them, we here focus on the security of cellular
IoT devices and their charging functions in the operational
4G LTE networks.

10 CONCLUSION

The cellular IoT is thriving and being deployed worldwide.
The security of the cellular IoT is playing an important
role in its development, but has not been fully explored
yet. In this work, we examine the security implications
in the service charging scheme of the cellular network.
We show that the cellular IoT charging can be exploited
to launch attacks against carriers. The adversary can gain
43.75%-80.00% cheaper bills on cellular data services by
masquerading non-IoT devices as IoT devices and abusing
them in unanticipated use scenarios. The fundamental issue
lies in that no sufficient security manners, which include
mutual authentications between involved cellular entities,
support differential charges between non-IoT and IoT de-
vices. In light of heavy burdens on standard modification,
we propose an anti-abuse solution to mitigate attack incen-
tives instead of addressing the vulnerabilities directly. It can
be used immediately in practice so as to benefit carriers
on securing the cellular IoT ecosystem. We hope that our
preliminary study can also stimulate new security designs
for the cellular IoT technology in the upcoming standards.
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